晶体衍射与结构分析

Crystal Diffraction and Structure Analysis

宋振 <u>song.zhen@vip.163.com</u>

University of Science and Technology Beijing

Course Outline

- 1. 几何晶体学基础
- 2. X射线晶体衍射理论及实验技术和方法
- 3. 晶体结构分析方法及应用举例

一、几何晶体学基础

- 1.1 晶体及晶体基本特征
- 1.2 晶体的宏观对称
- 1.3 空间点阵和晶胞,布拉维点阵
- 1.4 点群国际符号和晶体定向
- 1.5 空间群: 微观空间对称元素及组合,
- 1.6 晶体学国际表,等效点系
- 1.7 晶体学国际表应用举例

二、X射线晶体衍射理论及实验技术和方法
2.1 X射线物理学: X射线本质, X射线与物质的相互作用, X射线的探测与防护, X射线散射。
独立电子散射,原子散射

2.2 X射线衍射的运动学:

结构因数:一个晶体内所有晶胞对x射线的散射, 干涉函数,劳厄方程式与布拉格方程式及应用举例 2.3 倒易点阵,衍射实验技术和方法

倒易点阵和衍射方向

衍射数据的实验收集方法和数据处理

- 三、晶体结构分析方法及应用举例
 3.1 基于单晶衍射数据的晶体结构测定
 晶体结构分析的回顾与发展,晶体结构测定的一般方法
 3.2 粉末衍射法峰位分析:指标化,空间群确认, 点阵常数的精确测定及应用
- 3.3 粉末衍法射强度分析: 粉末衍射法测定晶体结构
- 3.4 粉末衍射法峰形分析: Rietveld 全谱拟合法及应用

X射线晶体结构分析的回顾

- 1895年, 伦琴(W.C. Röntgen)发现X射线
- 1896年,伦琴原著的英译文发表在《Nature》

假如你穿越到1895年, 需要多长时间才能发现X 射线衍射现象?

1年 2年 3年 4年 5年 5~10年 10~15年 15~20年 20~30年 30~50年

- 1921年,埃瓦尔德(P.P. Ewald)在索末菲(A. Sommerfeld)
 的指导下,正在德国慕尼黑写博士学位论文
- 他正在对光波穿过按一定模式排列的晶体散射原子的 情形进行数学分析
- 他去请教劳厄(M.v. Laue)怎样处理这种现象
- 在讨论过程中, 劳厄想到了一个问题, 就问埃瓦尔德:
 - "如果波长比晶体中原子间距小,而不是像光波那样, 波长比原子间距大得大,将会发生什么情形?"

- Ewald说自己的公式应当包括这样的情形,因为他推导 这个公式时并未使用任何近似法,还抄了一份给了 Laue
- Ewald发现Laue听他讲这话时"若有所思"(in a slightly distracted way),于是没有再讨论下去
- 后来Ewald就听到发现X射线衍射的消息

- Laue察觉到X射线可能满足波长比原子间距小的条件
- 在一次学术报告会后的非正式交谈中,索末菲的研究
 助手弗里德里希(W. Friedrich)表示他愿意做这个实验
- 所说索末菲对于这个尝试是否值得一做曾表示怀疑, 但是实验成功了
- 关于X射线衍射的第一个报告发表在1912年6月的《皇家巴伐利亚科学院会议录》中

劳厄的X射线衍射论文

- 巴克拉(Barkla)的X射线散射实验证明,入射辐射的一部分经散射后像光一样并不改变波长
- 劳厄推论:当X射线穿过一晶体时,晶体内的原子就成为次级波源,就像光栅上的格线一样
- X射线波长的数量级似乎为10-9厘米
- Friedrich和Kniping做实验来检验劳厄的想法

● 一束X射线经隔板上一小孔进入一铅箱

- ▶ B₁, B₂, B₃, B₄是一系列的小孔,最后一个小孔将射线束的 宽度限制在一毫米左右
- 此射线束照射在晶体Kr上,照相底片P₁,P₂,P₃,P₄,P₅分布
 在晶体四周以接受衍射线

劳厄的X射线衍射论文

- 首先用硫酸铜晶体做这个实验
- 原因: 来自晶体的特征荧光辐射可能起重要作用。原
 - 子量与Cu接近的原子对于产生特征辐射特别有效
- 当然,荧光辐射对于衍射实际上并不起任何作用

底片放置在 晶体的一侧 离X射线最 远的一方(P4) 晶体碾得粉碎,装在一个小纸 袋放回原处, 2

如果将底片放近一些, 或者放远一些,那么点 状图案就会缩小或放大。 但点的大小不变,说明?

- 伦琴发现X射线是在此以前17
 年,那么为什么在这期间别人
 都没有发现这一效应呢?
- 事实上,这17年中人们曾对X
 射线做了无数次实验
- 之所以没有发现,或许是由于
 所需曝光时间很长

2020.7.27 20:18

当时可以拥有的功率最大的水冷式X射线管也仅可通过 10 mA电流。使用这种X射线管,曝光时间也要20小时 之久,而且还需要时常停下来使射线管冷却
要是实验没有多大希望得出惊人的新结果,实验人员 是不大可能下这样大的功夫的

- 弗里德里希和克尼平随后把对称性很低的CuSO4晶体
 取下来,换上对称性很高的闪锌矿(ZnS)立方晶体
- 将晶体放正, 使X射线垂直射在立方体表面上
- 点状图案具有完整的四重对称,反映了晶体中原子点
 阵的对称性,所观察到的效应显然应归因于晶体点阵

劳厄对衍射图的分析

劳厄选取了立方晶体衍射
 的简单情形,入射线平行
 于立方晶体的一边

• 晶体点阵花样沿OX, OY, OZ三个参照轴上以a为间距 重复。劳厄条件: 光程差为整数倍波长 $a\cos\theta_1 = h_1\lambda$ $a\cos\theta_2 = h_2\lambda$ $a(1-\cos\theta_3) = h_3\lambda$

1. 对于每一个斑点, $\cos\theta_1$, $\cos\theta_2$, $1-\cos\theta_3$ 诸量的比应为整数; 因为这三个量是与整数h1,h2,h3成正比的

- 2. 假定X射线中有5种波长,就像光谱中五条谱线一样,得到合理解释。
- 3. 然而,这个假设并不是十分令人满意,因为这些波长可能形成的斑点有的在照 片中并未出现
- 4. 但是,主要结论是正确的,即斑点是由衍射而形成的

- 劳厄的结果并非是由于入射X射线中几个特定的波长所
 造成的,而是由于晶格光栅作用于任意波形的辐射脉
 冲的结果
- 这样的脉冲射到晶格面上必然沿一定的方向反射出去,
 因此就会出现衍射斑
- 为此,布拉格设计了一个实验,让很细的一束X射线照射在一片云母上
- 云母很容易劈理, 预期云母原子晶格面与劈理面平行

BRAGG's EQUATION

"I have always felt the association of my name with it to be an easily earned honor..."

- 并未涉及沿着面(along the plane) 的原子间距
- 仅涉及到面间距(interplanar spacing)

一维原子列 二维原子网 三维原子阵

KCl

KBr

"。。。供吹琉璃用的脚踏泵只有一个,我们只好妥为安 排,轮流使用。我记得有一位女研究生等了好久才把泵拿 到手,过了一会儿,她离开了自己的房间,没有注意把房 门带上。我路过她的门口时看见泵在她房间里,我就把它 拿走了。我第二次路过她房间,见她伏在桌上哭。不过, 很抱歉,我没有把泵还给她。"

简单立方

No.	2Theta	d-spacing	Int.	F	h	k	1	Mult.
1	21.578	4.1150	192616.83	34.43	0	0	1	6
2	30.702	2.9097	533257.63	58.77	0	1	1	12
3	37.838	2.3758	64972.66	31.54	1	1	1	8
4	43.973	2.0575	94321.00	51.89	0	0	2	6
5	49.490	1.8403	92348.16	29.35	0	1	2	24
6	54.584	1.6799	194234.38	47.58	1	1	2	24
7	63.938	1.4549	59750.40	44.55	0	2	2	12
8	68.330	1.3717	8981.52	26.22	0	0	3	6
9	68.330	1.3717	35926.07	26.22	1	2	2	24
10	72.592	1.3013	82581.04	42.24	0	1	3	24
11	76.756	1.2407	26112.59	24.99	1	1	3	24
12	80.851	1.1879	20853.79	40.34	2	2	2	8
13	84.898	1.1413	20567.10	23.91	0	2	3	24
14	88.920	1.0998	102852.65	38.73	1	2	3	48

体心立方

No.	2Theta	d-spacing	Int.	F	h	k	1		Mult.
1	25.026	3.5553	2238522.00	96.90	0	1	1		12
2	35.685	2.5140	444641.44	89.33	0	0	2		6
3	44.082	2.0527	976069.88	83.69	1	1	2		24
4	51.357	1.7777	309492.13	79.25	0	2	2		12
5	57.955	1.5900	428595.25	75.65	0	1	3		24
6	64.107	1.4515	105297.47	72.65	2	2	2		8
7	69.951	1.3438	489224.59	70.08	1	2	3		48
8	75.586	1.2570	49401.37	67.84	0	0	4		6
9	81.080	1.1851	165888.25	65.83	1	1	4		24
10	81.080	1.1851	82944.13	65.83	0	3	3		12
11	86.493	1.1243	144394.94	64.02	0	2	4		24
Int.									
2e6—									
+o 1.5e6									
106									
Teo									
500000									
0					-	rise di			
	10	20 30	40 2The	50 60 ta 转至	;占 ₩ 削"设置	VIDU 70 ፪"以激	ows 活 Wind	80 dows,	90

面心立方

No.	2Theta	d-spacing	Int.	F	h	k	1	Mult.
1	43.196	2.0927	380013.56	88.40	1	1	1	8
2	50.306	1.8123	177947.88	83.00	0	0	2	6
3	73.896	1.2815	101244.21	67.26	0	2	2	12
4	89.633	1.0929	119586.57	59.26	1	1	3	24
5	94.814	1.0463	35767.55	57.07	2	2	2	8
6	116.438	0.9062	23594.07	49.98	0	0	4	6
7	135.743	0.8316	118633.27	45.96	1	3	3	24
8	143.759	0.8105	141506.89	44.80	0	2	4	24

个衍射区间缺少特定的衍射峰

(011), (022)

CaF2

(2,0,0)

(2,2,2)

.

NaCl与KCl

问题? 1.(100) 衍射峰消失 2.全奇指标衍射峰弱于全偶 3.KCl (111) 弱于 NaCl (111)

NaCl

KCl

No.	2Theta	d-spacing	Int.	F	h	k	1	Mult.		
1	27.466	3.2447	44382.78	18.44	1	1	1	8	(0 0)	1)?
2	31.820	2.8100	523499.63	85.58	0	0	2	6	(_/
3	45.620	1.9870	340561.94	72.67	0	2	2	12		
4	54.077	1.6945	9833.31	10.59	1	1	3	24		
5	56.693	1.6224	109520.20	64.61	2	2	2	8		
6	66.495	1.4050	48080.42	58.96	0	0	4	6		
7	73.375	1.2893	5102.98	10.61	1	3	3	24		
8	75.609	1.2567	128465.41	54.71	0	2	4	24		
9	84.362	1.1472	95584.91	51.34	2	2	4	24		
No.	2Theta	d-spacing	Int.	F	h	k	1	Mult.		
1	24.493	3.6315	5540.20	5.77	1	1	1	8		
2	28.355	3.1450	1183336.13	113.71	0	0	2	6		
3	40.532	2.2239	791457.38	97.01	0	2	2	12		
4	47.929	1.8965	4944.71	6.55	1	1	3	24		
5	50.204	1.8158	258235.55	86.39	2	2	2	8		
5	58.662	1.5725	114011.99	79.11	0	0	4	6		
7	64.526	1.4430	1311.33	4.71	1	3	3	24		
8	66.416	1.4065	302567.09	73.86	0	2	4	24		
9	73.733	1.2839	219720.41	69.92	2	2	4	24		
10	79.039	1.2105	443.72	3.34	1	1	5	24		
11	79.039	1.2105	147.91	3.34	3	3	3	8		
12	87.698	1.1119	72029.50	64.41	0	4	4	12		

NaCl

.

.

.

.

.

.

KC1

- 全奇指标时,钠层的反射与氯层的反射是反相的,因
 - 此, 全奇指标衍射峰弱于全偶

尝试法 (模型法)
帕特逊函数 (向量空间法)
电子密度函数法
直接法
同晶置換
重原子
反常散射

参考书 周公度 著 晶体结构测定 科学出版社 张绍辉 傅亨 著 X射线晶体结构分析导论 武汉大学出版社

$$F(hkl) = \sum_{i=1}^{n} f_{j}e^{i2\pi(hx_{j}+ky_{j}+lz_{j})}$$

$$F(hkl) = v_{c}\int_{0}^{1}\int_{0}^{1}\int_{0}^{1}\rho(xyz)e^{2\pi i(hx+ky+lz)}dxdydz$$

.

. .

$$\rho(xyz) = \frac{1}{v_c} \sum_{h,k,l=-\infty}^{+\infty} F(hkl)e^{-2\pi i(hx+ky+lz)}$$

相角问题

衍射强度的收集、修正、统一与还原 实验强度 ↔ 结构因子 $|F(hkl)| \qquad F(hkl) = \sum_{i=1}^{n} f_{j} e^{i2\pi(hx_{j}+ky_{j}+lz_{j})}$ $F(hkl) = |F_{hkl}| \exp\{i\alpha_{hkl}\}$ $\rho(xyz) = \frac{1}{v_c} \sum_{l=1}^{+\infty} \sum_{l=1}^{+\infty} F(hkl)e^{-2\pi i(hx+ky+lz)}$

单晶体结构测定的主要步骤

- 1. 挑选直径大约为0.1-1.0mm的单晶
- 2. 在四圆衍射仪上测定晶胞参数:
 - 寻找若干个衍射点-----四圆角度-----(hkl)-----晶胞参数
- 3. 收集衍射强度数据,每个衍射点包括一组数值: h, k, l, l, σ(I)
- 4. 根据消光规律,确定空间群
- 5. 结构解析(需要提供分子式,密度等),用直接法或 Patterson 法求解初始结构模型,这是解决位相问题的过程。
- 6. 结构的最小二乘修正 R = 5% 左右
- 7. 原子的处理: 用差值Fourier确定H 或 理论加H

粉末图指标化的基本原理是根据倒易点阵矢量长度的一维

分布(三维倒易点阵的一维投影)来重构整个三维倒易点阵。

- 1. 实验数据采集、物相分析 (单相,多相)
- 2. 指标化,晶格常数,空间群
- 3. 若有同晶型化合物结构,Rietveld精修
- 4. 若新结构类型,解结构
 - 1) 首先考虑小单晶,单晶衍射数据,解结构
 - 2) 粉末衍射数据: 解结构
 - 程序: Fullprof,

尝试法
同构型法,重原子置换法
Rietveld全谱拟合法
从头计算法(分峰直接法)
最大熵法
蒙特卡洛法
遗传算法

• • •

Shi Ying, Liang JingKui, Liu Quanlin and Chen Xiaolong, *Unknown Crystal Structure Determination From X-ray Powder Diffraction Data*, Science in China 41A (2), 191-197 (FEB 1998)

