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Point groups and morphological symmetry. 
Introduction to the stereographic projection
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Lattice planes and Miller indices
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Planes passing through lattice nodes are called 
“rational planes”

a

c

b

(p,0,0)
(0,q,0)

(0,0,r)

Equation of the plane: x'/pa + y'/qb + z'/rc = 1

(qr)x + (pr)y + (pq)z = pqr
hx + ky + lz = m

First plane of the family (hkl) 
for m = 1
hx + ky + lz = 1

Intercepts of the first (m = 1) plane 
of the family (hkl) on the axes
p = pqr/qr = m/h = 1/h
q = pqr/pr = m/k = 1/k
r = pqr/pq = m/l = 1/l

Making m variable, we obtain a 
family of lattice planes, (hkl), 
where h, k and l are called the 
Miller indices.

The values h, k and l are called the 
Miller indices of the lattice plane 
and give its orientation.
All lattice planes in the same family 
have the same orientation → (hkl) 
represents the whole family of 
lattice planes.

Define: x = x'/a; y = y'/b; z = z'/c 

Equation of the plane: x/p + y/q + z/r = 1

Largest common integer factor for p,q,r = 1 → the plane shown 
is the first one for the chosen inclination passing through lattice 
node on all the three axes
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Why the reciprocal of the intersection (1/p) rather than 
the intersection (p) itself?

a

c

b

Consider a plane parallel to an axis – for example c 

What is the intersection of this plane with the axis c? 

What is the l Miller intersection of this plane? 1/ = 0
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Example: family (112) in a primitive lattice

a

c

b

1/1
1/1

Intercepts of the first plane 
of the family:
on a: 1/1
on b: 1/1
on c: 1/2 1/2

Intercepts of the second 
plane of the family:
on a: 2/1
on b: 2/1
on c: 2/2
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Example: family (326) in a primitive lattice

a

c

b1/3 1/2

Intercepts of the first plane 
of the family:
on a: 1/3
on b: 1/2
on c: 1/6

1/6

Intercepts of the sixth plane 
of the family:
on a: 6/3
on b: 6/2
on c: 6/6
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Miller indices for a primitive lattice are relatively prime integers

a

c

b
1/2 1/2

Intercepts of the first plane 
of a hypothetic family (222):
on a: 1/2
on b: 1/2
on c: 1/2 1/2

The first rational plane of 
this family has intercepts:
on a: 1/1
on b: 1/1
on c: 1/1

This plane does not pass 
through any lattice node – it 
is an irrational plane

In a primitive lattice, the Miller indices of a family of lattice planes are 
relatively prime integers:  (111)
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Miller indices for different types of lattice : (h00) in 
oP and oC (projection on ab)

oP

First plane of the familyIntersection a/1

h = 1
family (100)

First plane of the familyIntersection a/2
h = 2

family (200)

oC

In morphology, we do not see the lattice and thus the Miller indices of a 
faceface are usually relatively prime integers

http://dx.doi.org/10.1107/S1600576715011206 

a

b

http://dx.doi.org/10.1107/S1600576715011206
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Form {100}: the cube

Form {111}: the octahedron

Multiplicity 6

Multiplicity 8

c

a
b

The concept of form: set of faces equivalent by symmetry

c

a b

Example in the cubic crystal system
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zone [001]

Zone: set of faces whose intersection is parallel to a 
same direction, called the zone axis 

c

a
b

zone [010] zone [100]

Example in the cubic crystal system
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The stereographic projection: how to 
get rid of accidental morphological 

features of a crystal
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Spherical projection and spherical poles
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O

P

S

p'
p

Building the stereographic projection: from the spherical 
poles (P) to the stereographic poles (p, p') 
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R

N
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r
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r
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r
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p'
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r/2
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P
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r
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Building the stereographic projection: from the spherical 
poles (P) to the stereographic poles (p, p') 
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Q R

pN
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Stereographic projection: poles and symmetry planes
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{001}

{111} {110}

OctahedronCube Dodecahedron

a

b

c

a b

c

a

b

a

b

a

b

a

b

a
b

c

Example of analysis of the morphology of a crystal
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Stereographic vs. gnomonic projection

N

O

P

p

S

Stereographic projection Gnomonic projection

Be careful - some textbooks exchange the two terms!

N

O

S

p



Massimo Nespolo, Université de Lorraine18 / 31

Site-symmetry groups (stabilizers) and 
Wyckoff positions of point groups

Let P be a crystallographic (thus finite) point group and X a point in space.

The finite set of points{PX} = {X, X', X''…} is the orbit of X under the 
action of P.

A subgroup S of P (S P, possibly trivial, i.e. S = 1) leave X invariant, i.e. 
SX = X

S is called the site-symmetry group (or stabilizer) of X.

Points whose site-symmetry groups S are conjugate under P belong the 
same Wyckoff position

The number of points obtained as {PX} is the multiplicity M of the orbit, 
which is equal to the index of S in P: M = |P|/|S|
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Site-symmetry groups (stabilizers) and 
Wyckoff positions of point groups

4 fi

≠

fi

≠

≠

≠

≠

≠ Coordinates

xyz, yxz, xyz, yxz, 
xyz, yxz, xyz, yxz 

S = {1}, M = 8

Coordinates

xx0, xx0: S = {1,2
[110]

}
xx0, xx0: S = {1,2

[110]
}

S = {..2}, M = 4

p
j
P

p
j
1p

j
-1 = 1

p
j
2

[110]
p

j
-1 = {2

[110]
,2

[110]
}

General position 
S = {1}, M = |P|

Special position 
S  {1}, M = |P|/|S|
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Subgroups vs. supergroups: to remove symmetry 
operations is easier than to add them

G  H i = |G|/|H|

G

H
1
, H

2
…. H

n

G

H
1
, H

2
…. H

n

G' G''
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To remove symmetry operations is easier than 
to add them

≠

≠

4 fifi

≠

≠

≠

≠

≠

≠

fifi fi

≠

≠

≠

≠

fi

fifi

≠

≠

≠

≠

4

4

fi

fi
fi

≠
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≠

44 fi

222. 2.22

422

Orthorhombic 
subgroups of 
index 2

Tetragonal 
supergroups of 
222. index 2
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Indexing crystals of the hexagonal 
family: Bravais-Miller indices
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A
2

A
3

A
1

abc → A
1
A

2
A

3
C

hkl → hkil

a

b

120 º

240 º

Miller indices Bravais-Miller indices

A
3
 = -A

1
-A

2

i = -h-k

Hexagonal axes: Bravais-Miller indices
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A
1

A
2

A
3

(1010)

parallel to C→l = 0
parallel to A

2
→k = 0

(hkil) → (h0i0)
i = -h-0

(h0h0)
divide by the 
common factor

(0110)

(1100)

(1010)

(1100)

(0110)

If you use Miller indices the 
symmetry is less evident!

(100)
(010)
(110)
(100)
(010)
(110)

Bravais-Miller indices: example
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A
1

A
2

A
3

parallel to A
2
→k = 0

(hkil) → (h0il)
i = -h-0

(h0hl)

(0hhl)

(hh0l)

(h0hl)

(hh0l)

(0hhl)

If you use Miller indices the 
symmetry is less evident!

(h0l)
(0hl)
(hhl)
(h0l)
(0hl)
(hhl)

Bravais-Miller indices: example



Massimo Nespolo, Université de Lorraine26 / 31

A
1

A
2

A
3

parallel to C→l = 0

same intersection on A
1
 and A

2
→k = h

(hkil) → (hhi0)
i = -h-h

(hh2h0)
divide by the 
common factor

(1210)

(2110)
(1120)

(1120)

(2110)

(1210)
sin(30°) = ½ 

If you use Miller indices the 
symmetry is less evident!

(110)
(120)
(210)
(110)
(120)
(210)

Bravais-Miller indices: example
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A
1

A
2

A
3

same intersection on A
1
 and A

2
→k = h

(hkil) → (hhil)
i = -h-h

(hh2hl)

(h2hhl)

(2hhhl)
(hh2hl)

(2hhhl)

(h2hhl)

If you use Miller indices the 
symmetry is less evident!

(hhl)
(h2hl)
(2hhl)
(hhl)
(h2hl)
(2hhl)

Bravais-Miller indices: example
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Trigonal bipyramid

We you don’t see 3/m in crystallography？

3/m  6
hRhP

However ・・・・

3, 3, 6, 6, m
[001]

All act Only 3 and 3 act

3

m

acts on hR and hP→trigonal system
acts on hP only→hexagonal system

ContradictionContradiction！！A
1

A
2

A
3

$

A
1

A
2

A
3

Mirror visible in the morphology 
(absent in the structure)

6
62 = 3
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Diffraction and Laue indices
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A hyper-simplified view at diffraction 
phenomenon

Zero-order diffraction (direct beam)

First-order diffraction

Second-order diffraction

T
hird-order diffraction

Every point of the grid is the source of a spherical wave. Waves which 
differ by an integer number of wavelengths interfere positively, 
resulting in diffracted waves. Waves from neighbour points which differ 
by n wavelengths result in the n-th order diffraction.

Ideal model: one-dimensional grid

From M..J. Burger, X-ray crystallography
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Miller indices vs. Laue indices

(hkl) planes

Miller indices
(within parentheses)

First-order diffraction: hkl

Second-order diffraction: 2h2k2l

Third-order diffraction: 3h3k3l

n-th-order diffraction: nhnknl

…
…

…
.

Laue indices
(without parentheses!)

D
irect 

beam

1st-
order

2nd-
order

3rd-
order

(hkl)

000

hkl

2h2k2l

3h3k3l
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