Point groups and morphological symmetry. Introduction to the stereographic projection

2022 Spring Festival Crystallographic School and Workshop on Crystal-field Applications

University of Science and Technology, Beijing, China, 1-14 February 2022

Massimo Nespolo, Université de Lorraine, France massimo.nespolo@univ-lorraine.fr

Lattice planes and Miller indices

Planes passing through lattice nodes are called "rational planes"

Largest common integer factor for $p, q, r=1 \rightarrow$ the plane shown is the first one for the chosen inclination passing through lattice node on all the three axes

The values h, k and l are called the Miller indices of the lattice plane and give its orientation.
All lattice planes in the same family have the same orientation $\rightarrow(h k l)$ represents the whole family of lattice planes.

Equation of the plane: $x^{\prime} / p a+y^{\prime} / q b+z^{\prime} / r c=1$
Define: $x=x^{\prime} / a ; y=y^{\prime} / b ; z=z^{\prime} / c$
Equation of the plane: $x / p+y / q+z / r=1$

$$
\begin{aligned}
& (q r) x+(p r) y+(p q) z=p q r \\
& h x+k y+l z=m
\end{aligned}
$$

Making m variable, we obtain a family of lattice planes, (hkl), where h, k and l are called the Miller indices.
First plane of the family ($h k l$)
for $m=1$
$h x+k y+l z=1$
Intercepts of the first ($m=1$) plane of the family ($h k l$) on the axes
$p=p q r / q r=m / h=1 / h$
$q=p q r / p r=m / k=1 / k$
$r=p q r / p q=m / l=1 / l$

Why the reciprocal of the intersection ($1 / \mathrm{p}$) rather than the intersection (p) itself?

Consider a plane parallel to an axis - for example c

What is the intersection of this plane with the axis c ? ∞

What is the l Miller intersection of this plane?

$$
1 / \infty=0
$$

Example: family (112) in a primitive lattice

Intercepts of the first plane of the family:
on $\boldsymbol{a}: 1 / 1$
on $\boldsymbol{b}: 1 / 1$
on $c: 1 / 2$

Intercepts of the second plane of the family:
on $\boldsymbol{a}: 2 / 1$
on $\boldsymbol{b}: \mathbf{2 / 1}$
on $c: 2 / 2$

Example: family (326) in a primitive lattice

Intercepts of the first plane of the family:
on $\boldsymbol{a}: 1 / 3$
on $\boldsymbol{b}: 1 / 2$
on $c: 1 / 6$

Intercepts of the sixth plane of the family:
on $a: 6 / 3$
on $\boldsymbol{b}: \mathbf{6 / 2}$
on $c: 6 / 6$

Miller indices for a primitive lattice are relatively prime integers

Intercepts of the first plane
of a hypothetic family (222):
on $a: 1 / 2$
on $b: 1 / 2$
on $c: 1 / 2$
This plane does not pass through any lattice node - it is an irrational plane

The first rational plane of
this family has intercepts:
on $\boldsymbol{a}: 1 / 1$
on $\boldsymbol{b}: 1 / 1$
on $c: 1 / 1$
In a primitive lattice, the Miller indices of a family of lattice planes are relatively prime integers: (111)

Miller indices for different types of lattice : $(h 00)$ in $o P$ and $o C$ (projection on $a b$)

In morphology, we do not see the lattice and thus the Miller indices of a face are usually relatively prime integers

The concept of form: set of faces equivalent by symmetry

Example in the cubic crystal system

Form $\{100\}$: the cube

Multiplicity 6

Form $\{111\}$: the octahedron

Zone: set of faces whose intersection is parallel to a same direction, called the zone axis

Example in the cubic crystal system

zone [010]

zone [100]

The stereographic projection: how to get rid of accidental morphological features of a crystal

Spherical projection and spherical poles

Building the stereographic projection: from the spherical poles (P) to the stereographic poles ($\mathrm{p}, \mathrm{p}^{\prime}$)

Building the stereographic projection: from the spherical poles (P) to the stereographic poles ($\mathrm{p}, \mathrm{p}^{\prime}$)

Stereographic projection: poles and symmetry planes

S

S

Example of analysis of the morphology of a crystal

Stereographic vs. gnomonic projection

Stereographic projection

Gnomonic projection

Be careful - some textbooks exchange the two terms!

Site-symmetry groups (stabilizers) and Wyckoff positions of point groups

Let P be a crystallographic (thus finite) point group and X a point in space.
The finite set of points $\{P X\}=\left\{X, X^{\prime}, X^{\prime \prime} \ldots\right\}$ is the orbit of X under the action of P.

A subgroup S of $\mathrm{P}(\mathrm{S} \subset \mathrm{P}$, possibly trivial, i.e. $\mathrm{S}=1)$ leave X invariant, i.e. SX = X

S is called the site-symmetry group (or stabilizer) of X.
Points whose site-symmetry groups S are conjugate under P belong the same Wyckoff position

The number of points obtained as $\{\mathrm{PX}\}$ is the multiplicity M of the orbit, which is equal to the index of S in $\mathrm{P}: \mathrm{M}=|\mathrm{P}| / \mathrm{S} \mid$

Site-symmetry groups (stabilizers) and Wyckoff positions of point groups

Coordinates

$$
\begin{gathered}
x y z, \frac{y x z}{x y z}, \frac{x y z}{y x z}, \frac{y x z}{x y z}, y x z \\
\mathrm{~S}=\{1\}, \mathrm{M}=8
\end{gathered}
$$

General position $\mathrm{S}=\{1\}, \mathrm{M}=|\mathrm{P}|$

Coordinates

$$
x x 0, \overline{x x} 0: \mathrm{S}=\left\{1,2_{[110]}\right\}
$$

$$
x \bar{x} 0, \bar{x} x 0: \mathrm{S}=\left\{1,2_{[1 \overline{1} 0]}\right\}
$$

$$
\mathrm{S}=\{. .2\}, \mathrm{M}=4
$$

Special position

$$
\mathrm{S} \supset\{1\}, \mathrm{M}=|\mathrm{P}| / \mathrm{S} \mid
$$

Subgroups vs. supergroups: to remove symmetry operations is easier than to add them

$$
\mathrm{G} \supset \mathrm{H} \quad \mathrm{i}=|\mathrm{G}| /|\mathrm{H}|
$$

To remove symmetry operations is easier than to add them

Indexing crystals of the hexagonal family: Bravais-Miller indices

Hexagonal axes: Bravais-Miller indices

$$
\begin{aligned}
& \mathbf{a b c} \rightarrow \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{3} \mathbf{C} \\
& h k l \rightarrow h k i l
\end{aligned}
$$

Miller indices Bravais-Miller indices

$$
\begin{gathered}
\mathbf{A}_{3}=-\mathbf{A}_{1}-\mathbf{A}_{2} \\
i=-h-k
\end{gathered}
$$

Bravais-Miller indices: example

Bravais-Miller indices: example

If you use Miller indices the symmetry is less evident!

Bravais-Miller indices: example

Bravais-Miller indices: example

We you don't see $3 / m$ in crystallography ?

Diffraction and Laue indices

A hyper-simplified view at diffraction phenomenon

Every point of the grid is the source of a spherical wave. Waves which differ by an integer number of wavelengths interfere positively, resulting in diffracted waves. Waves from neighbour points which differ by n wavelengths result in the n-th order diffraction.

Miller indices vs. Laue indices

