University of Science and Technology, Beijung Optical Material and Device Lab

2022 SPRING FESTIVAL BEIJING CRYSTALLOGRAPHY SCHOOL

February I - I4, Beijing 2022

CO-ORDINATE TRANSFORMATIONS IN
 CRYSTALLOGRAPHY

Co-ordinate transformation

Transformation matrix-column pair (P,p)
(i) linear part: change of orientation or length:
$\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)=(\mathbf{a}, \mathbf{b}, \mathbf{c}) \boldsymbol{P}$

$$
=(\mathbf{a}, \mathbf{b}, \mathbf{c})\left(\begin{array}{lll}
P_{11} & P_{12} & P_{13} \\
P_{21} & P_{22} & P_{23} \\
P_{31} & P_{32} & P_{33}
\end{array}\right)=\begin{gathered}
\left(P_{11} \mathbf{a}+P_{21} \mathbf{b}+P_{31} \mathbf{c},\right. \\
P_{12} \mathbf{a}+P_{22} \mathbf{b}+P_{32} \mathbf{c}, \\
\left.P_{13} \mathbf{a}+P_{23} \mathbf{b}+P_{33} \mathbf{c}\right) .
\end{gathered}
$$

(ii) origin shift by a shift vector $\mathbf{p}\left(\mathrm{p}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\right)$:

$$
\boldsymbol{O}^{\prime}=\boldsymbol{O}+\boldsymbol{p} \quad \begin{aligned}
& \text { the origin } \boldsymbol{O}^{\prime} \text { has } \\
& \text { coordinates }\left(\mathrm{p}_{1}, \mathrm{P}_{2}, \mathrm{p}_{3}\right) \text { in } \\
& \text { the old coordinate system }
\end{aligned}
$$

EXAMPLE

Write "new in terms of old" as column vectors.

SOLUTION

$$
\begin{aligned}
& \left(\boldsymbol{a}^{\prime}, \boldsymbol{b}^{\prime}, \boldsymbol{c}^{\prime}\right)=(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
-1 / 2 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& (\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})=\left(\boldsymbol{a}^{\prime}, \boldsymbol{b}^{\prime}, \boldsymbol{c}^{\prime}\right)\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \boldsymbol{X}=(3 / 4,1 / 4,0) \\
& \boldsymbol{X}^{\prime}=(1 / 2,1,0)
\end{aligned}
$$

EXAMPLE

0 O $=0+p$
$p=(?)$

$$
\boldsymbol{X}=(3 / 4,1 / 4,0)
$$

$$
X^{\prime}=(?
$$

Linear parts as before.

SOLUTION

$$
\begin{aligned}
& \boldsymbol{p}=\left(\begin{array}{c}
1 / 2 \\
1 / 4 \\
0
\end{array}\right) \\
& \boldsymbol{q}=\left(\begin{array}{c}
-1 / 4 \\
-3 / 4 \\
0
\end{array}\right) \\
& \boldsymbol{X}=(3 / 4,1 / 4,0) \\
& \boldsymbol{X}^{\prime}=(1 / 4,1 / 4,0)
\end{aligned}
$$

Linear parts as before.

Transformation matrix-column pair (P,p)

$a^{\prime}=1 / \mathbf{2 a}-1 / \mathbf{2 b}$
b'= I/2a+I/2b
c'=c
$\boldsymbol{O}^{\prime}=\mathbf{O}+\frac{\frac{1 / 2}{1 / 4}}{\frac{1}{0}}$

$$
\begin{aligned}
& \mathbf{a}=\mathbf{a}^{\mathbf{\prime}}+\mathbf{b}^{\prime} \\
& \mathbf{b}=\mathbf{- a} \mathbf{a}+\mathbf{b} \\
& \mathbf{c}=\mathbf{c}^{\prime} \\
& \mathbf{O}=\mathbf{O}^{\prime}+\begin{array}{|c|}
\hline-1 / 4 \\
\hline \frac{13 / 4}{0} \\
\hline
\end{array}
\end{aligned}
$$

Short-hand notation for the description of transformation matrices

Transformation matrix: ($\mathbf{a}, \mathbf{b}, \mathbf{c}$), origin O

($\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\mathbf{\prime}}$), origin O^{\prime}

$$
\begin{array}{ll}
\text { notation rules: } & \text {-coefficients } 0,+1,-1 \\
& \text {-different columns in one line } \\
& \text {-origin shift }
\end{array}
$$

example:

Transformation of the coordinates of a point $X(x, y, z)$:

$$
\begin{aligned}
& \left(X^{\prime}\right)=(P, p)^{-1}(X) \\
& =\left(P^{-1},-P^{-1} P\right)(X) \\
& \begin{array}{|l|}
\hline \mathbf{x}^{-} \\
\hline \mathbf{y}^{\prime} \\
\hline \mathbf{z}^{\prime} \\
\hline
\end{array}=\left(\begin{array}{l|l|l|l|}
\hline P_{11} & P_{12} & P_{13} & \mid \\
\hline P_{21} & P_{22} & P_{23} & P_{2} \\
\hline P_{31} & P_{32} & P_{33} & P_{3}
\end{array}\right)^{-1} \begin{array}{|l|}
\hline x \\
\hline y \\
\hline y \\
\hline z \\
\hline
\end{array}
\end{aligned}
$$

special cases

$$
\begin{array}{ll}
\text {-origin shift }(\boldsymbol{P}=\boldsymbol{I}): & \boldsymbol{x}^{\prime}=\boldsymbol{x}-\boldsymbol{p} \\
\text {-change of basis }(\boldsymbol{P}=\mathbf{0}): & \boldsymbol{x}^{\prime}=\boldsymbol{P}^{-1} \boldsymbol{x}
\end{array}
$$

QUICK QUIZ

Determine the coordinates X ' of a point $\quad X=$0,70 with respect to the new basis $\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)=(\mathbf{a}, \mathbf{b}, \mathbf{c}) \mathbf{P}$, with $\mathbf{P}=\mathbf{c}, \mathbf{a}, \mathbf{b}$.
0,95

Hint

$$
\left(X^{\prime}\right)=(P, p)^{-1}(X)
$$

Covariant and contravariant crystallographic quantities
direct or crystal basis

$$
\left(\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}\right)=(\mathbf{a}, \mathbf{b}, \mathbf{c}) P=(\mathbf{a}, \mathbf{b}, \mathbf{c})
$$

reciprocal or dual basis

| \mathbf{a}^{*} |
| :--- | :--- |
| \mathbf{b}^{*} |
$\mathbf{c}^{*} \boldsymbol{*}$	$=P-1$	\mathbf{a}^{*}
\mathbf{b}^{*}		
\mathbf{c}^{*}	\(=\left(\begin{array}{	l

\hline P_{21} \& P_{22} \& P_{23}

\hline P_{31} \& P_{32} \& P_{33}

\hline\end{array}\right)^{-1}\)	\mathbf{a}^{*}
\mathbf{b}^{*}	
\mathbf{c}^{*}	

covariant to crystal basis: Miller indices

$$
\left(h^{\prime}, k^{\prime}, l^{\prime}\right)=(h, k, l) P
$$

contravariant to crystal basis: indices of a direction [u]

$$
\begin{array}{|c|}
\hline \mathbf{u}^{-} \\
\hline \mathbf{v}^{-} \\
\hline \mathbf{w}^{-} \\
\hline
\end{array}=\left(\begin{array}{|l|l|l|}
\hline \mathrm{P}_{11} & P_{12} & P_{13} \\
\hline \mathrm{P}_{21} & \mathrm{P}_{22} & \mathrm{P}_{23} \\
\hline \mathrm{P}_{31} & \mathrm{P}_{32} & \mathrm{P}_{33}
\end{array}\right)^{-1} \begin{array}{|c|}
\hline \mathbf{u} \\
\hline \mathbf{v} \\
\hline \mathbf{w} \\
\hline
\end{array}
$$

Transformation of symmetry operations (W,w)

$\left(W^{\prime}, W^{\prime}\right)=(P, p)^{-1}(W, w)(P, p)$

i. $\tilde{\boldsymbol{x}}^{\prime}=\left(\boldsymbol{W}^{\prime}, \boldsymbol{w}^{\prime}\right) \boldsymbol{x}^{\prime}$:
ii. $\tilde{\boldsymbol{x}}^{\prime}=(\boldsymbol{P}, \boldsymbol{p})^{-1} \tilde{\boldsymbol{x}}=(\boldsymbol{P}, \boldsymbol{p})^{-1}(\boldsymbol{W}, \boldsymbol{w}) \boldsymbol{x}=(\boldsymbol{P}, \boldsymbol{p})^{-1}(\boldsymbol{W}, \boldsymbol{w})(\boldsymbol{P}, \boldsymbol{p}) \boldsymbol{x}^{\prime}$.

Transformation of the coordinates of a point $X(x, y, z)$:

$$
\begin{aligned}
\left(X^{\prime}\right) & =(P, p)^{-1}(X) \\
& =(P-1,-P-1 p)(X)
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline \mathbf{x}^{\mathbf{c}} \\
\hline \mathbf{y}^{\prime} \\
\hline \mathbf{z}^{\prime} \\
\hline
\end{array}=\left(\begin{array}{ll|l|l|l|}
\hline \mathrm{P}_{11} & P_{12} & P_{13} & p 1 \\
\hline P_{21} & P_{22} & P_{23} & P_{2} \\
\hline P_{31} & P_{32} & P_{33} & p_{3}
\end{array}\right)^{-1} \begin{array}{|l|l|}
\hline x \\
\hline y \\
\hline z \\
\hline
\end{array}
$$

special cases

$$
\boldsymbol{x}^{\prime}=\boldsymbol{x}-\boldsymbol{p}
$$

-origin shift ($\mathbf{P}=\boldsymbol{I}$):

$$
\boldsymbol{x}^{\prime}=\boldsymbol{P}^{-1} \boldsymbol{x}
$$

Transformation of symmetry operations (W,w):

$$
\left(W^{\prime}, w^{\prime}\right)=(P, p)^{-1}(W, w)(P, p)
$$

Transformation by (\mathbf{P}, \mathbf{p}) of the unit cell parameters: metric tensor $\boldsymbol{G}: \boldsymbol{G}^{\prime}=\boldsymbol{P t}^{\boldsymbol{G}} \boldsymbol{P}$

Problem: SYMMETRY DATA ITA SETTINGS

530 ITA settings of orthorhombic and monoclinic groups

4. SYNOPTIC TABLES OF SPACE-GROUP SYMBOLS

MONOCLINIC SYSTEM Table 4.3.1 (cont.)

No. of space group	Schoenflies symbol	Standard short HermannMauguin symbol	Extended Hermann-Mauguin symbols for various settings and cell choices						Unique axis b Unique axis c Unique axis
			abc	cb̄a	abc	baṣ	abc	ācb	
$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & C_{2}^{1} \\ & C_{2}^{2} \\ & C_{2}^{3} \end{aligned}$	$\begin{aligned} & P 2 \\ & P 2, \\ & C 2 \end{aligned}$	P121	P121	P112	P112	P211	P211	
			P12, 1	$P 12,1$	P112 ${ }_{1}$	P112,	$P 2,11$	$P 2,11$	
			$\begin{array}{r} C 121 \\ 2 \end{array}$	$\begin{array}{r} A 121 \\ 2 \end{array}$	$\begin{array}{r} A \mid 12 \\ 2 \end{array}$	$\begin{array}{r} B 112 \\ 2_{1} \end{array}$	$B 211$	C211	Cell choice 1
			A121	C121	B112	A112	C211	${ }_{B 211}$	Cell choice 2
			$\stackrel{2}{121}$	$\begin{aligned} & 2_{1}^{2} \\ & 110 \end{aligned}$	${ }^{2} 2_{1}$	${ }^{2}$	${ }_{2}$	${ }_{2}$	Cell choice 2
							$\stackrel{1211}{ }$	1211	Cell choice 3
6	$\begin{aligned} & C_{x}^{1} \\ & C_{s}^{2} \end{aligned}$	$\begin{aligned} & P m \\ & P c \end{aligned}$							
					Pl1m	P11m	Pm11	Pm11	
			Plcl $P 1 n 1$	Plal Pln	P11a $P 11 n$ P1	$P 11 b$ $P 11 n$	$P \stackrel{P}{P b 11}$	${ }_{P c}{ }^{\text {cl1 }}$	Cell choice 1
			Plal	${ }_{\text {Plcl }}$	$P 11 n$ $P 11 b$	${ }_{P 11}^{P 11}$	${ }_{\text {Pn }}^{\text {Pll }}$	${ }_{P b}{ }_{P H 11}$	Cell choice 2 Cell choice 3
8	C_{s}^{3}	Cm	Clml	Alml	Allm	B11m	Bm11	Cm11	Cell choice 1
			$\stackrel{a}{\square}$	${ }^{c}{ }^{\text {c }}$	${ }^{\text {b }}$	${ }^{\text {a }}$	${ }^{\text {c }}$	b	
			$\underset{c}{\text { Alml }}$	$\underset{a}{C 1 m 1}$	${ }_{\text {B1 }}{ }_{\text {a }}$		$C_{b}^{C m 11}$	Bm11	Cell choice 2
			$11 m 1$	$n \mathrm{ml}$	111 m	111 m	Im11	$\stackrel{c}{\text { l }} 11$	Cell choice 3
9	C_{3}^{4}	Cc	${ }^{n}$	${ }^{n}$	${ }^{n}$	${ }^{n}$	n	n	
			$\underset{n}{C l \mathrm{Cl}}$	$\underset{n}{A l a 1}$	Alla ${ }_{n}$	$B 11$ n n	Bb11	Ccll	Cell choice 1
			$A \ln 1$	$C \ln 1$	B11n	Alln	${ }_{\text {Cnl1 }}$	${ }_{\text {Bn } 11}$	Cell choice 2
			$\stackrel{a}{a}$	$\stackrel{c}{c}$	$111 b^{\text {b }}$	111a	$\stackrel{c}{c}$	b	
			${ }_{c}$			71 b b	$\stackrel{\|c\| 1}{ }$	$\stackrel{l}{\text { c }} \mathrm{c} 11$	Cell choice 3
10		P2/m							
			$P 1 \frac{1}{m}$	P1 $\frac{1}{m}$	$P 11 \frac{2}{m}$	$P I \frac{2}{m}$	$P \frac{2}{m} 11$	$P \frac{2}{m} 11$	

Monoclinic descriptions

	Transf.	abc	cba	abc	baç	abc	ācb	Monoclinic axis b Monoclinic axis c Monoclinic axis a
HM	$C 2 / \mathrm{c}$	C12/c1	A12/a1	A112/a	$B 112 / b$	B2/b11	$C 2 / c 11$	Cell type 1
		$A 12 / n 1$	$C 12 / n 1$	$B 112 / n$	A112/n	$C 2 / n 11$	$B 2 / n 11$	Cell type 2
		I12/a1	$I 12 / c 1$	I112/b	I112/a	$I 2 / c 11$	I2/b11	Cell type 3

Orthorhombic descriptions

No.	HM	abc	bā	cab	$\overline{\mathbf{c}} \mathbf{b a}$	bca	$\mathbf{a c} \mathbf{c}$
33	$P n a 2_{1}$	$P n a 2_{1}$	$P b n 2_{1}$	$P 2_{1} n b$	$P 2_{1} c n$	$P c 2_{1} n$	$P n 2_{1} a$

bilbao crystallographic sever

Bilbao Crystallographic Server

Problem: Coordinate transformations Generators
 GENPOS General positions

Biboo Cystallographic Server \rightarrow Generators/General Positions
Help

How to select the group

The space groups are specified by their number as given in the intemational Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the button [choose it].

To see the data in a non conventional setting click on [Non conventional Setting]. Otherwise, click on [Conventional Setting].

Generators and General Positions

Please, enter the sequential number of group as given in the Intemational Tables for Crystallography, Vol. A or
space group
\qquad

Show:
Generators only
All General Positions ${ }^{\text {© }}$

Note:The transformation matrices must be read by columns. \mathbf{P} is the transformation from standard to the ITA-setting.

Example GENPOS:

default setting $\mathrm{Cl} 2 / \mathrm{cl}$

$$
\begin{aligned}
& (\mathrm{W}, \mathrm{w})_{\mathrm{Al\mid l/a}}= \\
& (\mathrm{P}, \mathrm{p})^{-1}(\mathrm{~W}, \mathrm{w})_{\mathrm{Cl} 2 / \mathrm{c} \mid}(\mathrm{P}, \mathrm{p})
\end{aligned}
$$

$(a, b, c)_{n}=(a, b, c)_{s} P$

ITA number	Setting	P	P^{-1}
15	C $12 / c 1$	a,b,c	a,b,c
15	A 1 2/n 1	-a-c,b,a	c,b,-a-c
15	/12/a 1	c,b,-a-c	-a-c,b,a
15	A 1 2/a 1	c,-b,a	c,-b,a
15	C $12 / n 1$	a,-b,-a-c	a,-b,a-c
15	/12/c 1	-a-c,-b,c	-a-c,-b,c
15	A 11 2/a	c,a,b	b,c,a
15	B112/n	a,-a-c,b	a,c,-a-b
15	/112/b	-a-c,c,b	-a-b,c,b
15	B 11 2/b	a,c,-b	a,-c, b
15	A 11 2/n	-a-c,a,-b	b,-c,-a-b
15	/112/a	c,-a-c,-b	-a-b,-c,a
15	B2/b 11	b, c, a	c,a,b
15	C $2 / n 11$	b,a,-a-c	b,a,-b-c
15	I2/c 11	b,-a-c,c	-b-c,a,c
15	C2/c 11	-b,a,c	b,-a,c
15	B2/n 11	-b,-a-c,a	c,-a,-b-c
15	I2/b1 1	-b,c,-a-c	-b-c,-a,b

Example GENPOS: ITA settings of C2/c(I5)

The general positions of the group 15 (A 11 2/a)

Bilbao Crystallographic Server

Problem: Coordinate transformations Wyckoff positions
 WYCKPOS

Bilbao Crystallographic Server

Problem: UNIT CELL CELLTRAN TRANSFORMATION

lattice parameters
hexagonal cell

Transform Unit Cell			
Cell Parameters:	5.67485 .674820 .37849090120	Centering	R :
Please, define the rotational part of the transformation matrix that relates the group and the subgroup bases			
in abc form:		c, ,a, (read by columns)	

METRICTENSOR

BOND LENGTHS

BONDING ANGLES

3D-unit cell and lattice parameters

lattice basis:
$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
unit cell:
the parallelepiped defined by the basis vectors
primitive P and centred unit cells: A,B,C,F, I, R
number of lattice points per unit cell

lengths of the unit translations:
a

$$
\begin{aligned}
& \alpha=(\widehat{\vec{b}, \vec{c}}) \\
& \beta=(\widehat{\vec{c}, \vec{a}}) \\
& \gamma=(\widehat{\vec{a}, \vec{b}})
\end{aligned}
$$

METRIC TENSOR (FUNDAMENTAL MATRIX)

Given a lattice with a basis: $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$
Metric tensor \mathbf{G}

Metric tensor \boldsymbol{G} is symmetric: $\boldsymbol{G}_{\mathrm{ik}}=\boldsymbol{G}_{\mathrm{ki}}$
Metric tensor \mathbf{G} in terms of lattice parameters

$$
\boldsymbol{G}=\left(\begin{array}{ccc}
\mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\
\mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \\
\mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c}
\end{array}\right) \quad \boldsymbol{G}=\left(\begin{array}{ccc}
a^{2} & a b \cos \gamma & a c \cos \beta \\
a b \cos \gamma & b^{2} & b c \cos \alpha \\
a c \cos \beta & b c \cos \alpha & c^{2}
\end{array}\right)
$$

EXERCISE (Problem 2.4.5)

Write down the metric tensors of the seven crystal systems in parametric form using the general expressions for their lattice parameters. For each of the cases, express the volume of the unit cell as a function of the lattice parameters.

For example:
tetragonal crystal system: $a=b, c, a=\beta=\gamma=90$

$$
\boldsymbol{G}=\begin{array}{|c|c|c|}
\hline \mathrm{a}^{2} & 0 & 0 \\
\hline 0 & \mathrm{a}^{2} & 0 \\
\hline 0 & 0 & \mathrm{c}^{2} \\
\hline
\end{array}
$$

$$
V=?
$$

The seven 3D-crystal systems

$$
\boldsymbol{G}=\left(\begin{array}{ccc}
a^{2} & a b \cos \gamma & a c \cos \beta \\
a b \cos \gamma & b^{2} & b c \cos \alpha \\
a c \cos \beta & b c \cos \alpha & c^{2}
\end{array}\right)
$$

V2= ${ }^{2}$ det $\mathbf{G}=$
 $=a^{2} b^{2} c^{2}\left(1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma\right)$

Transformation properties of \mathbf{G} under basis transformation

basis transformation:

$$
\left\{\mathbf{a}^{\prime}, \mathbf{a}^{\prime} 2, \mathbf{a}^{\prime}{ }_{3}\right\}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\} \boldsymbol{P}
$$

$$
\left.\boldsymbol{G}^{\prime}=\left\{\mathbf{a}^{\prime}, \mathbf{a}^{\prime}{ }_{2}, \mathbf{a}_{3}\right\}_{3}\right\}^{\top} .\left\{\mathbf{a}^{\prime}, \mathbf{a}^{\prime}{ }_{2}, \mathbf{a}_{3}^{\prime}\right\}=\boldsymbol{P}^{\boldsymbol{T}}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}^{\top} .\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\} \boldsymbol{P}
$$

$$
G^{\prime}=P^{T} G P
$$

$\boldsymbol{G}_{\boldsymbol{I}}=\mathrm{a}^{2}$| I | 0 | 0 |
| :---: | :---: | :---: |
| 0 | I | 0 |
| 0 | 0 | I |

$\boldsymbol{G}_{P}=\mathrm{a}^{2 / 4}$| 3 | -1 | $-I$ |
| :---: | :---: | :---: |
| | -1 | 3 |
| | $-I$ | |
| | -1 | -1 |
| | 3 | |

Examples

METRIC TENSORS

Bravais lattice*	Lattice parameters		Metric tensor			
	Conventional	Primitive	Conventional	Primitive/transf. \dagger	Relations of the components	Projections
$o P$	$\begin{aligned} & a, b, c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	$\begin{aligned} & a, b, c \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	$\begin{array}{lll} g_{11} & 0 & 0 \\ & g_{22} & 0 \\ & & g_{33} \end{array}$	$\begin{array}{ccl}g_{11} & 0 & 0 \\ & g_{22} & 0 \\ & & g_{33}\end{array}$		
$\begin{aligned} & o C \\ & (o S) \end{aligned}$		$\begin{aligned} & a_{1}=a_{2}, c \\ & \gamma, \alpha=\beta=90^{\circ} \end{aligned}$		$\begin{array}{llll} & & & \boldsymbol{P}(C) \\ & & & \\ g_{11}^{\prime} & g_{12}^{\prime} & 0 & \\ & g_{11}^{\prime} & 0 & \\ & & g_{33} \end{array}$	$\begin{aligned} & g_{11}^{\prime}=\frac{1}{4}\left(g_{11}+g_{22}\right) \\ & g_{12}^{\prime}=\frac{1}{4}\left(g_{11}-g_{22}\right) \\ & g_{11}=2\left(g_{11}^{\prime}+g_{12}^{\prime}\right) \\ & g_{22}=2\left(g_{11}^{\prime}-g_{12}^{\prime}\right) \end{aligned}$	
oI		$\begin{aligned} & a_{1}=a_{2}=a_{3} \\ & \alpha, \beta, \gamma \\ & \cos \alpha+\cos \beta \\ & \quad+\cos \gamma=-1 \end{aligned}$		$\begin{array}{\|lll} & & \\ -\tilde{g} & g_{12}^{\prime} & g_{13}^{\prime} \\ & -\tilde{g} & g_{23}^{\prime} \\ & & \\ \tilde{g}=g_{12}^{\prime}+g_{13}^{\prime}+g_{23}^{\prime} \end{array}$	$\begin{aligned} & g_{12}^{\prime}=\frac{1}{4}\left(-g_{11}-g_{22}+g_{33}\right) \\ & g_{13}^{\prime}=\frac{1}{4}\left(-g_{11}+g_{22}-g_{33}\right) \\ & g_{23}^{\prime}=\frac{1}{4}\left(g_{11}-g_{22}-g_{33}\right) \\ & \\ & g_{11}=-2\left(g_{12}^{\prime}+g_{13}^{\prime}\right) \\ & g_{22}=-2\left(g_{12}^{\prime}+g_{23}^{\prime}\right) \\ & g_{33}=-2\left(g_{13}^{\prime}+g_{23}^{\prime}\right) \end{aligned}$	
$o F$		$\begin{aligned} & a, b, c \\ & \alpha, \beta, \gamma \\ & \cos \alpha=\frac{-a^{2}+b^{2}+c^{2}}{2 b c} \\ & \cos \beta=\frac{a^{2}+b^{2}+c^{2}}{2 a c} \\ & \cos \gamma=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \end{aligned}$		$\begin{array}{llll} & & & P(F) \\ \tilde{g}_{1} & & g_{12}^{\prime} & g_{13}^{\prime} \\ & \bar{g}_{2}^{\prime} & g_{23}^{\prime} \\ & & \tilde{g}_{3} \\ \tilde{g}_{1}= & g_{12}^{\prime}+g_{13}^{\prime} \\ \tilde{g}_{2}= & g_{12}^{\prime}+g_{23}^{\prime} \\ \tilde{g}_{3}= & g_{13}^{\prime}+g_{23}^{\prime} \end{array}$	$\begin{aligned} & g_{12}^{\prime}=\frac{1}{4} g_{33} \\ & g_{13}^{\prime 3}=\frac{1}{4} g_{22} \\ & g_{23}^{\prime}=\frac{1}{4} g_{11} \\ & \\ & g_{11}=4 g_{23}^{\prime} \\ & g_{22}=4 g_{13}^{\prime} \\ & g_{33}=4 g_{12}^{\prime} \end{aligned}$	

Example

METRIC TENSORS

Bravais lattice*	Lattice parameters		Metric tensor			
	Conventional	Primitive	Conventional	Primitive/transf. \dagger	Relations of the components	Projections
$c P$	$\begin{aligned} & a_{1}=a_{2}=a_{3} \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	$\begin{aligned} & a_{1}=a_{2}=a_{3} \\ & \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	$\begin{array}{lll} g_{11} & 0 & 0 \\ & g_{11} & 0 \\ & & g_{11} \end{array}$	$\begin{array}{ccl}g_{11} & 0 & 0 \\ & g_{11} & 0 \\ & & g_{11}\end{array}$		
cI		$\begin{aligned} & a_{1}=a_{2}=a_{3} \\ & \alpha=\beta=\gamma=109.5^{\circ} \\ & \cos \alpha=-\frac{1}{3} \end{aligned}$		$\begin{array}{\|ccr} & & \boldsymbol{P}(I) \\ & & \\ g_{11}^{\prime} & -\frac{1}{3} g_{11}^{\prime} & -\frac{1}{3} g_{11}^{\prime} \\ & g_{11}^{\prime} & -\frac{1}{3} g_{11}^{\prime} \\ & & g_{11}^{\prime} \end{array}$	$\begin{aligned} & g_{11}^{\prime}=\frac{3}{4} g_{11} \\ & g_{11}=\frac{4}{3} g_{11}^{\prime} \end{aligned}$	
cF		$\begin{aligned} & a_{1}=a_{2}=a_{3} \\ & \alpha=\beta=\gamma=60^{\circ} \end{aligned}$		$\begin{array}{\|ccc} & & \\ & & \boldsymbol{P}(F) \\ g_{11}^{\prime} & \frac{1}{2} g_{g_{11}^{\prime}}^{\prime} & \frac{1}{2} g_{11}^{\prime} \\ & g_{11}^{\prime} & \frac{1}{2} g_{11}^{\prime} \\ & & g_{11}^{\prime} \end{array}$	$\begin{aligned} & g_{11}^{\prime}=\frac{1}{2} g_{11} \\ & g_{11}=2 g_{11}^{\prime} \end{aligned}$	

* See footnote to Table 9.1.7.1. Symbols in parentheses are standard symbols, see Table 2.1.2.1.
$\dagger \boldsymbol{P}(C)=\frac{1}{2}(110 / \overline{1} 10 / 002), \boldsymbol{P}(I)=\frac{1}{2}(\overline{1} \overline{1} 1 / 1 \overline{1} 1 / 11 \overline{1}), \boldsymbol{P}(F)=\frac{1}{2}(011 / 101 / 110), \boldsymbol{P}(\boldsymbol{R})=\frac{1}{3}(\overline{1} 2 \overline{1} / 211 / 111)$.

Crystallographic calculations: Volume of the unit cell

The volume V of the unit cell of a crystal structure, i.e. the body containing all points with coordinates $0 \leq x_{1}, x_{2}, x_{3}<1$, can be calculated by the formula

$$
\operatorname{det}(\boldsymbol{G})=V^{2}
$$

In the general case one obtains

$$
\begin{gathered}
V^{2}=\left|\begin{array}{ccc}
G_{11} & G_{12} & G_{13} \\
G_{21} & G_{22} & G_{23} \\
G_{31} & G_{32} & G_{33}
\end{array}\right|= \\
=a^{2} b^{2} c^{2}\left(1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma\right)
\end{gathered}
$$

Volume of the unit cell in terms of lattice parameters (Buerger, 194I)

Basis vectors with respect to Cartesian basis

$$
\begin{aligned}
& \mathbf{a}=\mathbf{i} a_{x}+\mathbf{j} a_{y}+\mathbf{k} a_{z}, \\
& \mathbf{b}=\mathbf{i} b_{x}+\mathbf{j} b_{y}+\mathbf{k} b_{z}, \\
& \mathbf{c}=\mathbf{i} c_{x}+\mathbf{j} c_{y}+\mathbf{k} c_{z},
\end{aligned} \quad V=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|
$$

$\operatorname{det}(A)=\operatorname{det}\left(A^{\top}\right)$

$$
\begin{aligned}
V^{2}=\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|\left|\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right| & =\left|\begin{array}{l}
\mathbf{a} \cdot \mathbf{a} \mathbf{a} \cdot \mathbf{b} \mathbf{a} \cdot \mathbf{c} \\
\mathbf{b} \cdot \mathbf{a} \mathbf{b} \cdot \mathbf{b} \mathbf{b} \cdot \mathbf{c} \\
\mathbf{c} \cdot \mathbf{a} \mathbf{c} \cdot \mathbf{b} \mathbf{c} \cdot \mathbf{c}
\end{array}\right|=\operatorname{det}(\boldsymbol{G}) \\
& =\left|\begin{array}{ccc}
a^{2} & a b \cos \gamma & a c \cos \beta \\
b a \cos \gamma & b^{2} & b c \cos \alpha \\
c a \cos \beta & c b \cos \alpha & c^{2}
\end{array}\right|
\end{aligned}
$$

$$
V=a b c\left(1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2} \gamma+2 \cos \alpha \cos \beta \cos \gamma\right)^{1 / 2}
$$

Crystallographic calculations: Distances or Lengths

length r of $\mathbf{r}: \quad r^{2}=(\mathbf{r}, \mathbf{r})=\left(r_{1} \mathbf{a}_{1}+r_{2} \mathbf{a}_{2}+r_{3} \mathbf{a}_{3}, r_{1} \mathbf{a}_{1}+r_{2} \mathbf{a}_{2}+r_{3} \mathbf{a}_{3}\right)$

$$
r^{2}=\left(r_{1} \mathbf{a}_{1}, r_{1} \mathbf{a}_{1}\right)+\left(r_{2} \mathbf{a}_{2}, r_{2} \mathbf{a}_{2}\right)+\left(r_{3} \mathbf{a}_{3}, r_{3} \mathbf{a}_{3}\right)+2\left(r_{2} \mathbf{a}_{2}, r_{3} \mathbf{a}_{3}\right)+2\left(r_{3} \mathbf{a}_{3}, r_{\mid} \mathbf{a}_{1}\right)+2\left(r_{1} \mathbf{a}_{1}, r_{2} \mathbf{a}_{2}\right)
$$

$$
r^{2}=\left.r_{1} a_{1}\right|^{2}+r_{2}^{2} a_{2}^{2}+r_{3}^{2} a_{3}^{2}+2 r_{2} r_{3} a_{2} a_{3} \cos a_{1}+2 r_{3} r_{1} a_{3} a_{1} \cos a_{2}+2 r_{1} r_{2} a_{1} a_{2} \cos a_{3}
$$

orthonormal basis $\left(a_{1}=a_{2}=a_{3}=1, a_{1}=a_{2}=a_{3}=90\right)$:

$$
r^{2}=r_{1}{ }^{2}+r_{2}{ }^{2}+r_{3}{ }^{2}
$$

Crystallographic calculations: Distances or Lengths
Given a basis:

$$
\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}
$$

length r of \mathbf{r} : $r^{2}=(\mathbf{r}, \mathbf{r})$

$$
r^{2}=\left.r_{1} a_{1}\right|^{2}+r_{2}^{2} a_{2}^{2}+r_{3}^{2} a_{3}^{2}+2 r_{2} r_{3} a_{2} a_{3} \cos a_{1}+2 r_{3} r_{1} a_{3} a_{1} \cos a_{2}+2 r_{1} r_{2} a_{1} a_{2} \cos a_{3}
$$

Fundamental matrix (metric tensor)

length of a vector:

$$
\mathbf{r}^{2}=(\mathbf{r}, \mathbf{r})=\mathbf{r}^{\top} \mathbf{G r}
$$

$\boldsymbol{G}=$| G_{11} | G_{12} | G_{13} |
| :--- | :--- | :--- |
| G_{21} | G_{22} | G_{23} |
| G_{31} | G_{32} | G_{33} |

$$
\begin{aligned}
& \text { orthonormal basis } \\
& \left(a_{1}=a_{2}=a_{3}=I, a_{1}=a_{2}=a_{3}=90\right) \text { : } \boldsymbol{G}=\boldsymbol{I}
\end{aligned}
$$

$$
\boldsymbol{G}_{\mathrm{ik}}=\left(\mathbf{a}_{\mathrm{i}}, \mathbf{a}_{\mathrm{k}}\right)=\mathrm{a}_{\mathrm{i}} a_{k} \cos \mathrm{a}_{\mathrm{j}},
$$

$$
\mathbf{r}^{2}=\mathbf{r}^{\top} \mathbf{G r}=\mathbf{r}^{\top} \mathbf{r}
$$

$$
\boldsymbol{G}_{\mathrm{ik}}=\boldsymbol{G}_{\mathrm{ki}}
$$

Crystallographic calculations: Bonding angle

Fig. 1.6.1 The bonding angle Φ between the bond vectors
$\overrightarrow{S X}=\mathbf{r}$ and $\overrightarrow{S Y}=\mathbf{t}$.

$$
\begin{aligned}
(\mathbf{r}, \mathbf{t})= & |\mathbf{r}||\mathbf{t}| \cos \Phi=r t \cos \Phi \\
& r_{1} t_{1} a_{1}^{2}+r_{2} t_{2} a_{2}^{2}+r_{3} t_{3} a_{3}^{2}+\left(r_{2} t_{3}+r_{3} t_{2}\right) a_{2} a_{3} \cos \alpha_{1}+ \\
& +\left(r_{3} t_{1}+r_{1} t_{3}\right) a_{1} a_{3} \cos \alpha_{2}+\left(r_{1} t_{2}+r_{2} t_{1}\right) a_{1} a_{2} \cos \alpha_{3}
\end{aligned}
$$

$$
\cos \Phi=\left(\sum_{i, k=1}^{3} G_{i k} r_{i} r_{k}\right)^{-1 / 2}\left(\sum_{i, k=1}^{3} G_{i k} t_{i} t_{k}\right)^{-1 / 2} \sum_{i, k=1}^{3} G_{i k} r_{i} t_{k}
$$

orthonormal basis:

$$
\begin{gathered}
r t \cos \Phi=r_{1} t_{1}+r_{2} t_{2}+r_{3} t_{3} \\
\cos \Phi=\frac{r_{1} t_{1}+r_{2} t_{2}+r_{3} t_{3}}{r t}
\end{gathered}
$$

Crystallographic calculations: Bonding angle

Given a basis:
$\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$

Fig. 1.6.1 The bonding angle Φ between the bond vectors $\overrightarrow{S X}=\mathbf{r}$ and $\overrightarrow{S Y}=\mathbf{t}$.

bonding angle:

Fundamental matrix (metric tensor)

$\boldsymbol{G}=$| G_{11} | G_{12} | G_{13} |
| :--- | :--- | :--- |
| G_{21} | G_{22} | G_{23} |
| G_{31} | G_{32} | G_{33} |

$$
(\mathbf{r}, \mathbf{t})=|\mathbf{r}||\mathbf{t}| \cos \Phi=r t \cos \Phi,
$$

$$
(\mathbf{r}, \mathbf{t})=\mathbf{r}^{\top} \mathbf{G} \mathbf{t}
$$

$$
\cos \Phi=\left(\boldsymbol{r}^{\mathrm{T}} \boldsymbol{G} \boldsymbol{r}\right)^{-1 / 2}\left(\boldsymbol{t}^{\mathrm{T}} \boldsymbol{G} \boldsymbol{t}\right)^{-1 / 2} \boldsymbol{r}^{\mathrm{T}} \boldsymbol{G} \boldsymbol{t} .
$$

$$
\begin{aligned}
& \boldsymbol{G}_{\mathrm{ik}}=\left(\mathbf{a}_{\mathrm{i}}, \mathbf{a}_{\mathrm{k}}\right)=\mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{k}} \cos \mathrm{a}_{\mathrm{j}}, \\
& \boldsymbol{G}_{\mathrm{ik}}=\boldsymbol{G}_{\mathrm{ki}}
\end{aligned}
$$

