

2022 SPRING FESTIVAL BEIJING CRYSTALLOGRAPHY SCHOOL

University of Science and Technology, Beijung **Optical Material and Device Lab**

February I - 14, Beijing 2022

CO-ORDINATE TRANSFORMATIONS CRYSTALLOGRAPHY

Co-ordinate transformation

Transformation matrix-column pair

(i) linear part: change of orientation or length:

$$(\mathbf{a}',\mathbf{b}',\mathbf{c}') = (\mathbf{a},\mathbf{b},\mathbf{c})\mathbf{P}$$

$$= (\mathbf{a}, \mathbf{b}, \mathbf{c}) \begin{pmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{pmatrix} = (P_{11}\mathbf{a} + P_{21}\mathbf{b} + P_{31}\mathbf{c}, \\ P_{12}\mathbf{a} + P_{22}\mathbf{b} + P_{32}\mathbf{c}, \\ P_{13}\mathbf{a} + P_{23}\mathbf{b} + P_{33}\mathbf{c}).$$

(ii) origin shift by a shift vector **p**(p1,p2,p3):

$$O' = O + p$$

3-dimensional space

 $(\mathbf{a}, \mathbf{b}, \mathbf{c})$, origin O: point X(x, y, z)(*P,p*) $(\mathbf{a}', \mathbf{b}', \mathbf{c}')$, origin O': point X(x', y', z')

(*P*,*p*)

the origin O' has coordinates (p1,p2,p3) in the old coordinate system

EXAMPLE

$$(a',b',c') = (a,b,c)$$
 ?
 $(a,b,c) = (a',b',c')$?
 $X = (3/4,1/4,0)$

Write "new in terms of old" as column vectors.

X' = (?)

QUICK QUIZ

SOLUTION

$$(a',b',c') = (a,b,c) \begin{pmatrix} 1/2 & 1/2 & 0 \\ -1/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$(a,b,c) = (a',b',c') \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$X = (3/4,1/4,0)$$

X' = (1/2, 1, 0)

EXAMPLE

O'= O + p Linear parts as before.

QUICK QUIZ

Linear parts as before.

SOLUTION

$$\boldsymbol{p} = \begin{pmatrix} 1/2 \\ 1/4 \\ 0 \end{pmatrix}$$
$$\boldsymbol{q} = \begin{pmatrix} -1/4 \\ -3/4 \\ 0 \end{pmatrix}$$
$$\boldsymbol{X} = (3/4, 1/4, 0)$$

$$X' = (1/4, 1/4, 0)$$

Transformation matrix-column pair (P,p)

a=a'+b' b=-a'+b'

Short-hand notation for the description of transformation matrices

Transformation matrix:

notation rules:

-written by columns -coefficients 0, +1, -1 -origin shift


```
(a',b',c'), origin O'
```

```
-different columns in one line
```

a+b, -a+b, c;-1/4,-3/4,0

Transformation of the coordinates of a point X(x,y,z):

$$(X')=(P,p)^{-1}(X)$$

= $(P^{-1}, -P^{-1}p)(X)$

special cases

- -origin shift (**P**=**I**):
- -change of basis (p=

$$oldsymbol{x}' = oldsymbol{x} - oldsymbol{p}$$

(a): $oldsymbol{x}' = oldsymbol{P}^{-1}oldsymbol{x}$

QUICK QUIZ

Determine the coordinates with respect to the new bas (a',b',c') = (a,b,c)P, with P

 $(X')=(P,p)^{-1}(X)$

Covariant and contravariant crystallographic quantities

direct or crystal basis

reciprocal or dual basis

covariant to crystal basis: Miller indices (h',k',l')=(h,k,l)P

contravariant to crystal basis: indices of a direction [u]

Transformation of symmetry operations (W,w)

Transformation of the coordinates of a point X(x,y,z):

$$(X')=(P,p)^{-1}(X)$$

= $(P^{-1}, -P^{-1}p)(X)$

special cases

- -origin shift (**P**=**I**):
- -change of basis (#

Transformation of symmetry operations (W,w):

$$(W',w')=(P,p)^{-1}(W,w)(P,p)$$

Transformation by (\mathbf{P}, \mathbf{p}) of the unit cell parameters:

metric tensor **G**: **G**'=**P**^t**GP**

$$x' = x - p$$

b=o):
$$x' = P^{-1}x$$

Problem: SYMMETRY DATA ITA SETTINGS

530 ITA settings of orthorhombic and **monoclinic** groups

4. SYNOPTIC TABLES OF SPACE-GROUP SYMBOLS

MONOCLINIC	SYSTEM

No. of	Schoenflies	Standard short	64 (44) 4 (4) 40()	Extended He	ermann-Mau settings and	uguin symbol cell choices	ls for various	nonincian	o binokibb
space group	symbol	Hermann- Mauguin symbol	a <u>b</u> c	c <u>b</u> a	ab <u>c</u>	ba <u>č</u>	abc	ācb	Unique axis b Unique axis c Unique axis a
3	C_2^1	P2	P121	P121	P112	P112	P211	P211	0.000 010 2
4	C_2^2	P21	P12,1	P12,1	P112,	P112,	P2,11	P2,11	1.1.(see Sect
5	C ³ ₂	C2	C121 2, A121 2, 1121 2,	A121 2, C121 2, 1121 2,	A112 21 B112 21 I112	$ \begin{array}{c} B112 \\ 2_1 \\ A112 \\ 2_1 \\ I112 \end{array} $	B211 21 C211 21 1211	$\begin{array}{c} C211\\ 2_1\\ B211\\ 2_1\\ I211\\ I211 \end{array}$	Cell choice 1 Cell choice 2 Cell choice 3
6	CL				2,	2,	2,	2,	SIGNA BE DS
7	C_s^1	Pm	P1m1	P1m1	P11m	Pllm	Pm11	Pm11	in the second of
<i>'</i>	C_s^2	Pc	Plcl Plnl Plal	Plal Plnl Plcl	P11a P11n P11b	P11b P11n P11a	Pb11 Pn11 Pc11	Pc11 Pn11 Pb11	Cell choice 1 Cell choice 2 Cell choice 3
8	C3	Cm	Clm1 a Alm1 c Ilm1	Alm1 c Clm1 a Ilm1	Allm b Bllm a Illm	B11m a A11m b I11m	Bm11 c Cm11 b Im11	Cm11 b Bm11 c Im11	Cell choice 3 Cell choice 2 Cell choice 3
9	C_s^4	Cc	n Clcl n	n Alal n	n Alla n	n B11b n	n Bb11 n	n Ccll n	Cell choice 1
ALINE ST			Aln1 a Ila1 c	Clnl c Ilcl a	B11n b 111b a	Alln a Illa b	Cn11 c Ic11 b	Bn11 b Ib11 c	Cell choice 2 Cell choice 3
10	C ¹ _{2k}	P2/m	$P1\frac{2}{m}1$	$P1\frac{2}{m}1$	$P11\frac{2}{m}$	$P11\frac{2}{m}$	$P\frac{2}{m}$ 11	$P\frac{2}{m}$ 11	(Salaris and
11	C2.	P2 /m	P1 211	p1 2, 1	2,		2	2	CONSTRUCTION

Table 4.3.1 (cont.)

Monoclinic descriptions

		abc	cba					Monoclinic axis b
	Transf.			abc	baīc			Monoclinic axis c
						\mathbf{abc}	$ar{\mathbf{a}}\mathbf{c}\mathbf{b}$	Monoclinic axis a
		C12/c1	A12/a1	A112/a	B112/b	B2/b11	C2/c11	Cell type 1
HM	C2/c	A12/n1	C12/n1	B112/n	A112/n	C2/n11	B2/n11	Cell type 2
		I12/a1	I12/c1	I112/b	I112/a	I2/c11	I2/b11	Cell type 3

Orthorhombic descriptions

No.	HM	abc	baīc	cab	ība	bca	aīcb
33	$Pna2_1$	$Pna2_1$	$Pbn2_1$	$P2_1nb$	$P2_1cn$	$Pc2_1n$	$Pn2_1a$

SYMMETRY DATA: ITA SETTINGS

1 3	
٨	bilbao crystaf
lo	graphic server

ECM31-Oviedo Satellite

Crystallography online: workshop on use and applications of the structural t of the Bilbao Crystallographic Serve

20-21 August 2018

News:

- New Article in Nature 07/2017: Bradlyn et al. "Topological quantum chemistry" Nature (2017). 547, 298-305.
- New program: BANDREP 04/2017: Band representations and Elementary Band representations of Double Space Groups.
- New section: Double point and space groups
 - New program: DGENPOS 04/2017: General positions of Double Space Groups
 - New program: REPRESENTATIONS DPG 04/2017: Irreducible representations of

GENPOS	Ge
WYCKPOS	W
HKLCOND	Re
MAXSUB	Ma
SERIES	Se
WYCKSETS	Eq
NORMALIZER	No
KVEC	Th
SYMMETRY OPERATIONS	Ge
IDENTIFY GROUP	Ide

Contact us

bilbao crystallographic server

Publications How to cite the server About us Space-group symmetry enerators and General Positions of Space Groups yckoff Positions of Space Groups eflection conditions of Space Groups aximal Subgroups of Space Groups eries of Maximal Isomorphic Subgroups of Space Groups quivalent Sets of Wyckoff Positions ormalizers of Space Groups ne k-vector types and Brillouin zones of Space Groups eometric interpretation of matrix column representations of symmetry operations entification of a Space Group from a set of generators in an arbitrary setting

Structure Utilities

Subperiodic Groups: Layer, Rod and Frieze Groups

Structure Databases

Raman and Hyper-Raman scattering

Point-group symmetry

Plane-group symmetry

Generators

How to select the group	Please, enter the s Tables for Crystall
The space groups are specified by their number as given in the International Tables for Crystallography, Vol. A. You	rabios ion organal
can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the button [choose it].	Show:
To see the data in a non conventional setting click on [Non conventional Setting]. Otherwise, click on [Conventional Setting].	Conventio

Bilbao Crystallographic Server

Note: The transformation matrices must be read by columns. P is the transformation from standard to the ITA-setting.

Example GENPOS:

default setting CI2/cI

$(W,w)_{AII2/a} =$ $(P,p)^{-1}(W,w)_{CI2/cI}(P,p)$

final setting AII2/a

ITA-Settings for the Space Group 15

$$(a, b, c)_{n} = (a, b, c)_{s} P$$

ITA number	Setting	Р	P ⁻¹
15	C 1 2/c 1	a,b,c	a,b,c
15	A 1 2/n 1	-a-c,b,a	c,b,-a-c
15	<i>l</i> 1 2/a 1	c,b,-a-c	-a-c,b,a
15	A 1 2/a 1	c,-b,a	c,-b,a
15	C 1 2/n 1	a,-b,-a-c	a,-b,a-c
15	/ 1 2/c 1	-a-c,-b,c	-a-c,-b,c
15	A 1 1 2/a	c,a,b	b,c,a
15	B 1 1 2/n	a,-a-c,b	a,c,-a-b
15	I 1 1 2/b	-a-c,c,b	-a-b,c,b
15	B 1 1 2/b	a,c,-b	a,-c,b
15	A 1 1 2/n	-a-c,a,-b	b,-c,-a-b
15	/ 1 1 2/a	c,-a-c,-b	-a-b,-c,a
15	B 2/b 1 1	b,c,a	c,a,b
15	C 2/n 1 1	b,a,-a-c	b,a,-b-c
15	<i>l</i> 2/c 1 1	b,-a-c,c	-b-c,a,c
15	C 2/c 1 1	-b,a,c	b,-a,c
15	<i>B</i> 2/ <i>n</i> 1 1	-b,-a-c,a	c,-a,-b-c
15	<i>I 2/b</i> 1 1	-b,c,-a-c	-b-c,-a,b

Example GENPOS: ITA settings of C2/c(15)

The general positions of the group 15 (A 1 1 2/a)

N	Stand	dard/Default Setting	g C2/c		ITA-Setting A 1 1 2/a	
	(x,y,z) form	matrix form	symmetry operation	(x,y,z) form	matrix form	symmetry operation
1	x, y, z	$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	1	x, y, z	$\left(\begin{array}{rrrrr}1&0&0&0\\0&1&0&0\\0&0&1&0\end{array}\right)$	1
2	-x, y, -z+1/2	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 0,y,1/4	-x+1/2, -y, z	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$	2 1/4,0,z
3	-x, -y, -z	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 0,0,0	-x, -y, -z	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 0,0,0
4	x, -y, z+1/2	$\left(\begin{array}{rrrrr}1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & 1 & 1/2\end{array}\right)$	c x,0,z	x+1/2, y, -z	$\left(\begin{array}{rrrrr}1&0&0&1/2\\0&1&0&0\\0&0&-1&0\end{array}\right)$	a x,y,0
5	x+1/2, y+1/2, z	$\left(\begin{array}{rrrrr}1&0&0&1/2\\0&1&0&1/2\\0&0&1&0\end{array}\right)$	t (1/2,1/2,0)	x, y+1/2, z+1/2	$\left(\begin{array}{rrrrr}1&0&0&0\\0&1&0&1/2\\0&0&1&1/2\end{array}\right)$	t (0,1/2,1/2)
6	-x+1/2, y+1/2, -z+1/2	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	2 (0,1/2,0) 1/4,y,1/4	-x+1/2, -y+1/2, z+1/2	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & 1 & 1/2 \end{array}\right)$	2 (0,0,1/2) 1/4,1/4,z
7	-x+1/2, -y+1/2, -z	$\left(\begin{array}{rrrr} -1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 0 \end{array}\right)$	-1 1/4,1/4,0	-x, -y+1/2, -z+1/2	$\left(\begin{array}{rrrrr} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \end{array}\right)$	-1 0,1/4,1/4
8	x+1/2, -y+1/2, z+1/2	$\left(\begin{array}{rrrrr}1&0&0&1/2\\0&-1&0&1/2\\0&0&1&1/2\end{array}\right)$	n (1/2,0,1/2) x,1/4,z	x+1/2, y+1/2, -z+1/2	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	n (1/2,1/2,0) x,y,1/4

default setting

AII2/a setting

Problem: Coordinate transformations Wyckoff positions

How to select the group

The space groups are specified by their number as given in the International Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on the link choose it.

If you are using this program in the preparation of a paper, please cite it in the following form:

Aroyo, et. al. Zeitschrift fuer Kristallographie (2006), 221, 1, 15-27.

Transformation of the basis

Bilbao Crystallographic Server

A e a a [origin 1] c,a,b b,c,a

B b e b [origin 1] b,c,a c,a,b

Ccce[origin 2] a,b,c a,b,c

A e a a [origin 2] c,a,b b,c,a

B b e b [origin 2] b,c,a c,a,b

68

68

68

68

68

UNIT CELL **Problem:**

Bilbao Crystallographic Server

3D-unit cell and lattice parameters

lattice basis: {a, b, c}

unit cell: the parallelepiped defined by the basis vectors

primitive P and centred unit cells: A,B,C,F, I, R

number of lattice points per unit cell lengths of the unit translations: a

> Ь С

Lattice parameters

angles between them: $\alpha = (\vec{b}, \vec{c})$ $\beta = (\vec{c}, \vec{a})$

 $\gamma = \left(\widehat{\vec{a}, \vec{b}}\right)$

METRIC TENSOR (FUNDAMENTAL MATRIX)

Given a lattice with a basis: $\{a_1, a_2, a_3\}$

Metric tensor **G**

Metric tensor **G** is symmetric: **G**_{ik}=**G**_{ki}

Metric tensor \boldsymbol{G} in terms of lattice parameters

$$G = \begin{pmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c} \end{pmatrix} \quad G = \begin{pmatrix} a^2 & ab\cos\gamma & ac\cos\beta \\ ab\cos\gamma & b^2 & bc\cos\alpha \\ ac\cos\beta & bc\cos\alpha & c^2 \end{pmatrix}$$

$$\begin{array}{c} \mathbf{a}_{1} \\ \mathbf{a}_{2} \\ \mathbf{a}_{3} \end{array} \\ \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3} \\ \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3} \\ \mathbf{a}_{2}, \mathbf{a}_{3} \\ \mathbf{a}_{3} \end{array} \\ \begin{array}{c} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{array} \\ \begin{array}{c} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{array}$$

$$G_{ik} = (a_i, a_k) = a_i a_k \cos \alpha_j$$

EXERCISE (Problem 2.4.5)

Write down the metric tensors of the seven crystal systems in parametric form using the general expressions for their lattice parameters. For each of the cases, express the volume of the unit cell as a function of the lattice parameters.

> For example: tetragonal crystal system: $a=b, c, \alpha=\beta=\gamma=90$

a ²	0	0	
0	a ²	0	
0	0	c ²	

The seven 3D-crystal systems

$$V^{2} = \det \mathbf{G} =$$
$$= a^{2} b^{2} c^{2} (1 - \cos^{2} \alpha - \cos^{2} \beta - \cos^{2} \gamma + 2 \cos \alpha \cos \beta \cos \gamma).$$

Transformation properties of **G** under basis transformation

$G' = \{a'_1, a'_2, a'_3\}^T \{a'_1, a'_2, a'_3\} = P^T \{a_1, a_2, a_3\}^T \{a_1, a_2, a_3\} P$ $G' = P^T G P$

basis transformation:

$$\{a'_1, a'_2, a'_3\} = \{a_1, a_2, a_3\}$$

Examples

	Lattice	e parameters		Metric tensor	r	
Bravais lattice*	Conventional	Primitive	Conventional	Primitive/transf.†	Relations of the components	Projections
оР		a,b,c $lpha=eta=\gamma=90^\circ$		g ₁₁ 0 0 g ₂₂ 0 g ₃₃		
oC (oS)		$a_1 = a_2, c$ $\gamma, \alpha = \beta = 90^\circ$	g ₁₁ 0 0	$\begin{array}{ccc} P(C) \\ g_{11}' & g_{12}' & 0 \\ g_{11}' & 0 \\ g_{33} \end{array}$	$g'_{11} = \frac{1}{4}(g_{11} + g_{22})$ $g'_{12} = \frac{1}{4}(g_{11} - g_{22})$ $g_{11} = 2(g'_{11} + g'_{12})$ $g_{22} = 2(g'_{11} - g'_{12})$	
oI	a, b, c $\alpha = \beta = \gamma = 90^{\circ}$	$a_1 = a_2 = a_3$ α, β, γ $\cos \alpha + \cos \beta$ $+ \cos \gamma = -1$	g ₂₂ 0 g ₃₃	$P(I) = -\tilde{g} g'_{12} g'_{13} = -\tilde{g} g'_{23} = -\tilde{g} \\ \tilde{g} = g'_{12} + g'_{13} + g'_{23}$	$g'_{12} = \frac{1}{4}(-g_{11} - g_{22} + g_{33})$ $g'_{13} = \frac{1}{4}(-g_{11} + g_{22} - g_{33})$ $g'_{23} = \frac{1}{4}(g_{11} - g_{22} - g_{33})$ $g_{11} = -2(g'_{12} + g'_{13})$ $g_{22} = -2(g'_{12} + g'_{23})$ $g_{33} = -2(g'_{13} + g'_{23})$	
oF		a, b, c α, β, γ $\cos \alpha = \frac{-a^2 + b^2 + c^2}{2bc}$ $\cos \beta = \frac{a^2 + b^2 + c^2}{2ac}$ $\cos \gamma = \frac{a^2 + b^2 - c^2}{2ab}$		$P(F)$ $\tilde{g}_{1} \qquad \begin{array}{c} g_{12}' & g_{13}' \\ \tilde{g}_{2} & g_{23}' \\ \tilde{g}_{3} \\ \tilde{g}_{1} = g_{12}' + g_{13}' \\ \tilde{g}_{2} = g_{12}' + g_{23}' \\ \tilde{g}_{3} = g_{13}' + g_{23}' \\ \end{array}$	$g'_{12} = \frac{1}{4} g_{33}$ $g'_{13} = \frac{1}{4} g_{22}$ $g'_{23} = \frac{1}{4} g_{11}$ $g_{11} = 4g'_{23}$ $g_{22} = 4g'_{13}$ $g_{33} = 4g'_{12}$	

METRIC TENSORS

Example

M	E

	Lattice parameters		Metric tensor			
Bravais lattice*	Conventional	Primitive	Conventional	Primitive/transf.†	Relations of the components	Projections
сP		$a_1 = a_2 = a_3$ $\alpha = \beta = \gamma = 90^\circ$		$ g_{11} 0 0 \\ g_{11} 0 \\ g_{11} $		
cI	$a_1 = a_2 = a_3$ $\alpha = \beta = \gamma = 90^\circ$	$a_1 = a_2 = a_3$ $\alpha = \beta = \gamma = 109.5^\circ$ $\cos \alpha = -\frac{1}{3}$	$g_{11} 0 0 \\ g_{11} 0 \\ g_{11} g_{11}$	$\begin{array}{c} P(I) \\ g_{11}' & -\frac{1}{3}g_{11}' & -\frac{1}{3}g_{11}' \\ g_{11}' & -\frac{1}{3}g_{11}' \\ g_{11}' & g_{11}' \\ g_{11}' \end{array}$	$ \begin{array}{l} g_{11}' = \frac{3}{4}g_{11} \\ g_{11} = \frac{4}{3}g_{11}' \\ \end{array} $	
cF		$a_1 = a_2 = a_3$ $\alpha = \beta = \gamma = 60^\circ$		$\begin{array}{c} P(F) \\ g_{11}' & \frac{1}{2}g_{11}' & \frac{1}{2}g_{11}' \\ g_{11}' & \frac{1}{2}g_{11}' \\ g_{11}' & \frac{1}{2}g_{11}' \\ g_{11}' \end{array}$	$g_{11}' = \frac{1}{2}g_{11}$ $g_{11} = 2g_{11}'$	

* See footnote to Table 9.1.7.1. Symbols in parentheses are standard symbols, see Table 2.1.2.1. † $P(C) = \frac{1}{2}(110/\bar{1}10/002), P(I) = \frac{1}{2}(\bar{1}\bar{1}1/1\bar{1}1/1\bar{1}), P(F) = \frac{1}{2}(011/101/110), P(R) = \frac{1}{3}(\bar{1}2\bar{1}/\bar{2}11/111).$

ETRIC TENSORS

Crystallographic calculations: Volume of the unit cell

The volume V of the unit cell of a crystal structure, *i.e.* the body containing all points with coordinates $0 \le x_1, x_2, x_3 < 1$, can be calculated by the formula

 $V^2 =$ $=a^2b^2c^2(1-\cos^2lpha-\cos^2eta-\cos^2\gamma+2\coslpha\coseta\cos\gamma).$

 $\det(\boldsymbol{G}) = V^2.$

Volume of the unit cell in terms of lattice parameters (Buerger, 1941)

Basis vectors with respect to Cartesian basis $\mathbf{a} = \mathbf{i}a_x + \mathbf{j}a_y + \mathbf{k}a_z,$ $\mathbf{b} = \mathbf{i}b_x + \mathbf{j}b_y + \mathbf{k}b_z,$ $\mathbf{c} = \mathbf{i}c_x + \mathbf{j}c_y + \mathbf{k}c_z,$ det (A)=det(A^{\top}) $V^{2} = \begin{vmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \end{vmatrix} \begin{vmatrix} a_{x} & b_{x} & c_{x} \\ a_{y} & b_{y} & c_{y} \\ a_{z} & b_{z} & c_{z} \end{vmatrix}$

$$V = abc(1 - \cos^2 \alpha - \cos^2 \alpha)$$

$$V = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

$$\begin{vmatrix} \mathbf{a}_{x} \\ \mathbf{b}_{y} \\ \mathbf{b}_{z} \end{vmatrix} = \begin{vmatrix} \mathbf{a} \cdot \mathbf{a} \ \mathbf{a} \cdot \mathbf{b} \ \mathbf{a} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{a} \ \mathbf{b} \cdot \mathbf{b} \ \mathbf{b} \cdot \mathbf{c} \\ \mathbf{c} \cdot \mathbf{a} \ \mathbf{c} \cdot \mathbf{b} \ \mathbf{c} \cdot \mathbf{c} \end{vmatrix} = \det (\mathbf{G})$$

$$= \begin{vmatrix} a^{2} & ab \cos \gamma & ac \cos \beta \\ ba \cos \gamma & b^{2} & bc \cos \alpha \\ ca \cos \beta & cb \cos \alpha & c^{2} \end{vmatrix}$$

 $(\cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma)^{1/2}$

Crystallographic calculations: Distances or Lengths

orthonormal basis (a₁=a₂=a₃= $r^2 = r_1^2 + r_2^2 + r_3^2$

$$\mathbf{r} = \mathbf{X}\mathbf{Y} = r_1\mathbf{a}_1 + r_2\mathbf{a}_2 + r_3\mathbf{a}_3, \ r_i \in \mathbb{R}$$

$$\begin{pmatrix} y_1 - x_1 \\ y_2 - x_2 \\ y_3 - x_3 \end{pmatrix}, \text{ where } \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ and } \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$\mathbf{r}_2\mathbf{a}_2 + r_3\mathbf{a}_3, r_1\mathbf{a}_1 + r_2\mathbf{a}_2 + r_3\mathbf{a}_3)$$

$$\mathbf{r}_3 + 2(r_2\mathbf{a}_2, r_3\mathbf{a}_3) + 2(r_3\mathbf{a}_3, r_1\mathbf{a}_1) + 2(r_1\mathbf{a}_1, r_2\mathbf{a}_2)$$

 $r^{2}=r_{1}^{2}a_{1}^{2}+r_{2}^{2}a_{2}^{2}+r_{3}^{2}a_{3}^{2}+2r_{2}r_{3}a_{2}a_{3}cos\alpha_{1}+2r_{3}r_{1}a_{3}a_{1}cos\alpha_{2}+2r_{1}r_{2}a_{1}a_{2}cos\alpha_{3}$

$$|, \alpha_1 = \alpha_2 = \alpha_3 = 90)$$
:

Crystallographic calculations: Distances or Lengths

Given a basis: $\{a_1, a_2, a_3\}$

length r of r: $r^2 = (r, r)$

Fundamental matrix (metric tensor)

$$G_{11} G_{12} G_{13}$$

$$G_{21} G_{22} G_{23}$$

$$G_{31} G_{32} G_{33}$$

 $G_{ik}=(a_i,a_k)=a_ia_k\cos\alpha_j,$

G_{ik}=**G**_{ki}

 $r^{2}=r_{1}^{2}a_{1}^{2}+r_{2}^{2}a_{2}^{2}+r_{3}^{2}a_{3}^{2}+2r_{2}r_{3}a_{2}a_{3}cos\alpha_{1}+2r_{3}r_{1}a_{3}a_{1}cos\alpha_{2}+2r_{1}r_{2}a_{1}a_{2}cos\alpha_{3}$

orthonormal basis

$$(a_1=a_2=a_3=1, \alpha_1=\alpha_2=\alpha_3=90)$$
: **G**=**I**

Crystallographic calculations: Bonding angle

 $\begin{array}{ccc}
\mathbf{t} & & \text{Fig. 1.6.1 The bonding angle } \Phi \text{ be-} \\
\hline
\Phi & X & & \text{tween the bond vectors} \\
\overrightarrow{\mathbf{r}} & & \overrightarrow{SX} = \mathbf{r} \text{ and } \overrightarrow{SY} = \mathbf{t}.
\end{array}$

 $(\mathbf{r}, \mathbf{t}) = |\mathbf{r}| |\mathbf{t}| \cos \Phi = r t \cos \Phi,$ $r_1 t_1 a_1^2 + r_2 t_2 a_2^2 + r_3 t_3 a_3^2 + (r_2 t_3 + r_3 t_2) a_2 a_3 \cos \alpha_1 +$ $+(r_3 t_1 + r_1 t_3) a_1 a_3 \cos \alpha_2 + (r_1 t_2 + r_2 t_1) a_1 a_2 \cos \alpha_3.$

$$\cos \Phi = \left(\sum_{i,k=1}^{3} G_{ik} r_i r_k\right)^{-1/2} \left(\sum_{i,k=1}^{3} G_{ik} t_i t_k\right)^{-1/2} \sum_{i,k=1}^{3} G_{ik} r_i t_k$$

orthonormal basis:

 $r t \cos \Phi = r_1 t_1 + r_2 t_2 + r_3 t_3,$ $r_2 t_2 + r_3 t_3$ $r\,t$

$$\cos\Phi = \frac{r_1t_1 + r_1}{r_1}$$

Crystallographic calculations: Bonding angle

Given a basis: $\{a_1, a_2, a_3\}$

	GII	G12	G ₁₃
G =	G ₂₁	G ₂₂	G ₂₃
	G ₃₁	G ₃₂	G33

 $G_{ik} = (a_i, a_k) = a_i a_k \cos \alpha_j,$ $G_{ik} = G_{ki}$

Fig. 1.6.1 The bonding angle Φ between the bond vectors $\overrightarrow{SX} = \mathbf{r}$ and $\overrightarrow{SY} = \mathbf{t}$.

bonding angle:

$$(\mathbf{r}, \mathbf{t}) = |\mathbf{r}| |\mathbf{t}| \cos \Phi = r t \cos \Phi,$$

 $\cos \Phi = (\mathbf{r}^{\mathrm{T}} \mathbf{G} \mathbf{r})^{-1/2} (\mathbf{t}^{\mathrm{T}} \mathbf{G} \mathbf{t})^{-1/2} \mathbf{r}^{\mathrm{T}} \mathbf{G} \mathbf{t}.$