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Also, the inverse matrices of P and p are needed. They are

Q ! P"1

and

q ! "P"1p!

The matrix q consists of the components of the negative shift vector
q which refer to the coordinate system a#, b#, c#, i.e.

q ! q1a# $ q2b# $ q3c#!

Thus, the transformation (Q, q) is the inverse transformation of
(P, p). Applying (Q, q) to the basis vectors a#, b#, c# and the origin
O#, the old basis vectors a, b, c with origin O are obtained.

For a two-dimensional transformation of a# and b#, some
elements of Q are set as follows: Q33 ! 1 and
Q13 ! Q23 ! Q31 ! Q32 ! 0.

The quantities which transform in the same way as the basis
vectors a, b, c are called covariant quantities and are written as row
matrices. They are:

the Miller indices of a plane (or a set of planes), (hkl), in direct
space and

the coordinates of a point in reciprocal space, h, k, l.

Both are transformed by

%h#, k#, l#& ! %h, k, l&P!

Usually, the Miller indices are made relative prime before and after
the transformation.

The quantities which are covariant with respect to the basis
vectors a, b, c are contravariant with respect to the basis vectors
a', b', c' of reciprocal space.

The basis vectors of reciprocal space are written as a column
matrix and their transformation is achieved by the matrix Q:

a'#

b'#

c'#

!

"#

$

%& ! Q

a'

b'

c'

!

"#

$

%&

!
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

!

"#

$

%&
a'

b'

c'

!

"#

$

%&

!
Q11a' $ Q12b' $ Q13c'

Q21a' $ Q22b' $ Q23c'

Q31a' $ Q32b' $ Q33c'

!

"#

$

%&!

The inverse transformation is obtained by the inverse matrix

P ! Q"1:

a'

b'

c'

!

#

$

& ! P
a'#

b'#

c'#

!

#

$

&!

These transformation rules apply also to the quantities covariant
with respect to the basis vectors a', b', c' and contravariant with
respect to a, b, c, which are written as column matrices. They are the
indices of a direction in direct space, [uvw], which are transformed
by

u#

v#

w#

!

#

$

& ! Q
u
v
w

!

#

$

&!

In contrast to all quantities mentioned above, the components of a
position vector r or the coordinates of a point X in direct space
x, y, z depend also on the shift of the origin in direct space. The
general (affine) transformation is given by

x#

y#

z#

!

"#

$

%& ! Q

x

y

z

!

"#

$

%&$ q

!
Q11x $ Q12y $ Q13z $ q1

Q21x $ Q22y $ Q23z $ q2

Q31x $ Q32y $ Q33z $ q3

!

"#

$

%&!

Example

If no shift of origin is applied, i.e. p ! q ! o, the position vector
r of point X is transformed by

r# ! %a, b, c&PQ
x
y
z

!

#

$

& ! %a#, b#, c#&
x#

y#

z#

!

#

$

&!

In this case, r ! r#, i.e. the position vector is invariant, although
the basis vectors and the components are transformed. For a pure
shift of origin, i.e. P ! Q ! I , the transformed position vector r#
becomes

r# ! %x $ q1&a $ %y $ q2&b $ %z $ q3&c
! r $ q1a $ q2b $ q3c
! %x " p1&a $ %y " p2&b $ %z " p3&c
! r " p1a " p2b " p3c!

Here the transformed vector r# is no longer identical with r.

It is convenient to introduce the augmented %4 ( 4& matrix !
which is composed of the matrices Q and q in the following manner
(cf. Chapter 8.1):

! ! Q q
o 1

' (
!

Q11 Q12 Q13 q1

Q21 Q22 Q23 q2

Q31 Q32 Q33 q3

0 0 0 1

!

""#

$

%%&

with o the %1 ( 3& row matrix containing zeros. In this notation, the
transformed coordinates x#, y#, z# are obtained by

Fig. 5.1.3.1. General affine transformation, consisting of a shift of origin
from O to O# by a shift vector p with components p1 and p2 and a change
of basis from a, b to a#, b#. This implies a change in the coordinates of
the point X from x, y to x#, y#.
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(a,b, c), origin O: point X(x, y, z)

(a′
,b′

, c′), origin O’: point X(x′
, y

′
, z

′)

3-dimensional space

(P,p)

Co-ordinate transformation

5.1. Transformations of the coordinate system (unit-cell transformations)
BY H. ARNOLD

5.1.1. Introduction

There are two main uses of transformations in crystallography.
(i) Transformation of the coordinate system and the unit cell

while keeping the crystal at rest. This aspect forms the main topic of
the present part. Transformations of coordinate systems are useful
when nonconventional descriptions of a crystal structure are
considered, for instance in the study of relations between different
structures, of phase transitions and of group–subgroup relations.
Unit-cell transformations occur particularly frequently when
different settings or cell choices of monoclinic, orthorhombic or
rhombohedral space groups are to be compared or when ‘reduced
cells’ are derived.

(ii) Description of the symmetry operations (motions) of an
object (crystal structure). This involves the transformation of the
coordinates of a point or the components of a position vector while
keeping the coordinate system unchanged. Symmetry operations are
treated in Chapter 8.1 and Part 11. They are briefly reviewed in
Chapter 5.2.

5.1.2. Matrix notation

Throughout this volume, matrices are written in the following
notation:

As (1 ! 3) row matrices:

(a, b, c) the basis vectors of direct space
(h, k, l) the Miller indices of a plane (or a set of

planes) in direct space or the coordinates
of a point in reciprocal space

As (3 ! 1) or (4 ! 1) column matrices:
x " #x!y!z$ the coordinates of a point in direct space
#a%!b%!c%$ the basis vectors of reciprocal space
(u!v!w) the indices of a direction in direct space
p " #p1!p2!p3$ the components of a shift vector from

origin O to the new origin O &

q " #q1!q2!q3$ the components of an inverse origin
shift from origin O & to origin O, with
q " 'P'1p

w " #w1!w2!w3$ the translation part of a symmetry
operation ! in direct space

! " #x!y!z!1$ the augmented #4 ! 1$ column matrix of
the coordinates of a point in direct space

As (3 ! 3) or (4 ! 4) square matrices:
P, Q " P'1 linear parts of an affine transformation;

if P is applied to a #1 ! 3$ row matrix,
Q must be applied to a #3 ! 1$ column
matrix, and vice versa

W the rotation part of a symmetry
operation ! in direct space

" " P p
o 1

! "
the augmented affine #4 ! 4$ trans-
formation matrix, with o " #0, 0, 0$

# " Q q
o 1

! "
the augmented affine #4 ! 4$ trans-
formation matrix, with # " "'1

$ " W w
o 1

! "
the augmented #4 ! 4$ matrix of a
symmetry operation in direct space (cf.
Chapter 8.1 and Part 11).

5.1.3. General transformation

Here the crystal structure is considered to be at rest, whereas the
coordinate system and the unit cell are changed. Specifically, a
point X in a crystal is defined with respect to the basis vectors a, b, c
and the origin O by the coordinates x, y, z, i.e. the position vector r
of point X is given by

r " xa ( yb ( zc

" #a, b, c$
x

y

z

#

$%

&

'("

The same point X is given with respect to a new coordinate system,
i.e. the new basis vectors a&, b&, c& and the new origin O& (Fig.
5.1.3.1), by the position vector

r& " x&a& ( y&b& ( z&c&"

In this section, the relations between the primed and unprimed
quantities are treated.

The general transformation (affine transformation) of the
coordinate system consists of two parts, a linear part and a shift
of origin. The #3 ! 3$ matrix P of the linear part and the #3 ! 1$
column matrix p, containing the components of the shift vector p,
define the transformation uniquely. It is represented by the symbol
(P, p).

(i) The linear part implies a change of orientation or length or
both of the basis vectors a, b, c, i.e.

#a&, b&, c&$ " #a, b, c$P

" #a, b, c$
P11 P12 P13

P21 P22 P23

P31 P32 P33

#

$%

&

'(

" #P11a ( P21b ( P31c,

P12a ( P22b ( P32c,

P13a ( P23b ( P33c$"

For a pure linear transformation, the shift vector p is zero and the
symbol is (P, o).

The determinant of P, det#P$, should be positive. If det#P$ is
negative, a right-handed coordinate system is transformed into a
left-handed one (or vice versa). If det#P$ " 0, the new basis vectors
are linearly dependent and do not form a complete coordinate
system.

In this chapter, transformations in three-dimensional space are
treated. A change of the basis vectors in two dimensions, i.e. of the
basis vectors a and b, can be considered as a three-dimensional
transformation with invariant c axis. This is achieved by setting
P33 " 1 and P13 " P23 " P31 " P32 " 0.

(ii) A shift of origin is defined by the shift vector

p " p1a ( p2b ( p3c"

The basis vectors a, b, c are fixed at the origin O; the new basis
vectors are fixed at the new origin O& which has the coordinates
p1, p2, p3 in the old coordinate system (Fig. 5.1.3.1).

For a pure origin shift, the basis vectors do not change their lengths
or orientations. In this case, the transformation matrix P is the unit
matrix I and the symbol of the pure shift becomes (I, p).
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keeping the coordinate system unchanged. Symmetry operations are
treated in Chapter 8.1 and Part 11. They are briefly reviewed in
Chapter 5.2.

5.1.2. Matrix notation

Throughout this volume, matrices are written in the following
notation:

As (1 ! 3) row matrices:

(a, b, c) the basis vectors of direct space
(h, k, l) the Miller indices of a plane (or a set of

planes) in direct space or the coordinates
of a point in reciprocal space

As (3 ! 1) or (4 ! 1) column matrices:
x " #x!y!z$ the coordinates of a point in direct space
#a%!b%!c%$ the basis vectors of reciprocal space
(u!v!w) the indices of a direction in direct space
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w " #w1!w2!w3$ the translation part of a symmetry
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! " #x!y!z!1$ the augmented #4 ! 1$ column matrix of
the coordinates of a point in direct space

As (3 ! 3) or (4 ! 4) square matrices:
P, Q " P'1 linear parts of an affine transformation;

if P is applied to a #1 ! 3$ row matrix,
Q must be applied to a #3 ! 1$ column
matrix, and vice versa

W the rotation part of a symmetry
operation ! in direct space

" " P p
o 1

! "
the augmented affine #4 ! 4$ trans-
formation matrix, with o " #0, 0, 0$

# " Q q
o 1

! "
the augmented affine #4 ! 4$ trans-
formation matrix, with # " "'1

$ " W w
o 1
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the augmented #4 ! 4$ matrix of a
symmetry operation in direct space (cf.
Chapter 8.1 and Part 11).

5.1.3. General transformation

Here the crystal structure is considered to be at rest, whereas the
coordinate system and the unit cell are changed. Specifically, a
point X in a crystal is defined with respect to the basis vectors a, b, c
and the origin O by the coordinates x, y, z, i.e. the position vector r
of point X is given by
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The same point X is given with respect to a new coordinate system,
i.e. the new basis vectors a&, b&, c& and the new origin O& (Fig.
5.1.3.1), by the position vector

r& " x&a& ( y&b& ( z&c&"

In this section, the relations between the primed and unprimed
quantities are treated.

The general transformation (affine transformation) of the
coordinate system consists of two parts, a linear part and a shift
of origin. The #3 ! 3$ matrix P of the linear part and the #3 ! 1$
column matrix p, containing the components of the shift vector p,
define the transformation uniquely. It is represented by the symbol
(P, p).

(i) The linear part implies a change of orientation or length or
both of the basis vectors a, b, c, i.e.
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P12a ( P22b ( P32c,

P13a ( P23b ( P33c$"

For a pure linear transformation, the shift vector p is zero and the
symbol is (P, o).

The determinant of P, det#P$, should be positive. If det#P$ is
negative, a right-handed coordinate system is transformed into a
left-handed one (or vice versa). If det#P$ " 0, the new basis vectors
are linearly dependent and do not form a complete coordinate
system.

In this chapter, transformations in three-dimensional space are
treated. A change of the basis vectors in two dimensions, i.e. of the
basis vectors a and b, can be considered as a three-dimensional
transformation with invariant c axis. This is achieved by setting
P33 " 1 and P13 " P23 " P31 " P32 " 0.

(ii) A shift of origin is defined by the shift vector

p " p1a ( p2b ( p3c"

The basis vectors a, b, c are fixed at the origin O; the new basis
vectors are fixed at the new origin O& which has the coordinates
p1, p2, p3 in the old coordinate system (Fig. 5.1.3.1).

For a pure origin shift, the basis vectors do not change their lengths
or orientations. In this case, the transformation matrix P is the unit
matrix I and the symbol of the pure shift becomes (I, p).
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(i) linear part: change of orientation or length:

(ii) origin shift by a shift vector p(p1,p2,p3): 

the origin O’ has 
coordinates (p1,p2,p3) in 
the old coordinate system 

O’ = O + p

Transformation matrix-column pair (P,p)



EXAMPLE



QUICK QUIZ SOLUTION



EXAMPLE

O

O’

O’= O + p



QUICK QUIZ SOLUTION



1/2 1/2 0

-1/2 1/2 0

0 0 1

1/2

1/4

0

(P,p)=( ) 1 -1 0

1 1 0

0 0 1

-1/4

-3/4

0

(P,p)-1=( )
Transformation matrix-column pair (P,p)

a’=1/2a-1/2b
b’=1/2a+1/2b

c’=c

O’=O+
1/2

1/4

0

a=a’+b’
b=-a’+b’
c=c’
O=O’+

-1/4

-3/4

0



Short-hand notation for the description 
of transformation matrices

Transformation matrix:

-coefficients 0, +1, -1
-different columns in one line 

notation rules:

example: 1 -1

1 1

1

-1/4

-3/4

0

a+b, -a+b, c;-1/4,-3/4,0{

Also, the inverse matrices of P and p are needed. They are

Q ! P"1

and

q ! "P"1p!

The matrix q consists of the components of the negative shift vector
q which refer to the coordinate system a#, b#, c#, i.e.

q ! q1a# $ q2b# $ q3c#!

Thus, the transformation (Q, q) is the inverse transformation of
(P, p). Applying (Q, q) to the basis vectors a#, b#, c# and the origin
O#, the old basis vectors a, b, c with origin O are obtained.

For a two-dimensional transformation of a# and b#, some
elements of Q are set as follows: Q33 ! 1 and
Q13 ! Q23 ! Q31 ! Q32 ! 0.

The quantities which transform in the same way as the basis
vectors a, b, c are called covariant quantities and are written as row
matrices. They are:

the Miller indices of a plane (or a set of planes), (hkl), in direct
space and

the coordinates of a point in reciprocal space, h, k, l.

Both are transformed by

%h#, k#, l#& ! %h, k, l&P!

Usually, the Miller indices are made relative prime before and after
the transformation.

The quantities which are covariant with respect to the basis
vectors a, b, c are contravariant with respect to the basis vectors
a', b', c' of reciprocal space.

The basis vectors of reciprocal space are written as a column
matrix and their transformation is achieved by the matrix Q:

a'#

b'#

c'#

!

"#

$

%& ! Q

a'

b'

c'

!

"#

$

%&

!
Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

!

"#

$

%&
a'

b'

c'

!

"#

$

%&

!
Q11a' $ Q12b' $ Q13c'

Q21a' $ Q22b' $ Q23c'

Q31a' $ Q32b' $ Q33c'

!

"#

$

%&!

The inverse transformation is obtained by the inverse matrix

P ! Q"1:

a'

b'

c'

!

#

$

& ! P
a'#

b'#

c'#

!

#

$

&!

These transformation rules apply also to the quantities covariant
with respect to the basis vectors a', b', c' and contravariant with
respect to a, b, c, which are written as column matrices. They are the
indices of a direction in direct space, [uvw], which are transformed
by

u#

v#

w#

!

#

$

& ! Q
u
v
w

!

#

$

&!

In contrast to all quantities mentioned above, the components of a
position vector r or the coordinates of a point X in direct space
x, y, z depend also on the shift of the origin in direct space. The
general (affine) transformation is given by

x#

y#

z#

!

"#

$

%& ! Q

x

y

z

!

"#

$

%&$ q

!
Q11x $ Q12y $ Q13z $ q1

Q21x $ Q22y $ Q23z $ q2

Q31x $ Q32y $ Q33z $ q3

!

"#

$

%&!

Example

If no shift of origin is applied, i.e. p ! q ! o, the position vector
r of point X is transformed by

r# ! %a, b, c&PQ
x
y
z

!

#

$

& ! %a#, b#, c#&
x#

y#

z#

!

#

$

&!

In this case, r ! r#, i.e. the position vector is invariant, although
the basis vectors and the components are transformed. For a pure
shift of origin, i.e. P ! Q ! I , the transformed position vector r#
becomes

r# ! %x $ q1&a $ %y $ q2&b $ %z $ q3&c
! r $ q1a $ q2b $ q3c
! %x " p1&a $ %y " p2&b $ %z " p3&c
! r " p1a " p2b " p3c!

Here the transformed vector r# is no longer identical with r.

It is convenient to introduce the augmented %4 ( 4& matrix !
which is composed of the matrices Q and q in the following manner
(cf. Chapter 8.1):

! ! Q q
o 1

' (
!

Q11 Q12 Q13 q1

Q21 Q22 Q23 q2

Q31 Q32 Q33 q3

0 0 0 1

!

""#

$

%%&

with o the %1 ( 3& row matrix containing zeros. In this notation, the
transformed coordinates x#, y#, z# are obtained by

Fig. 5.1.3.1. General affine transformation, consisting of a shift of origin
from O to O# by a shift vector p with components p1 and p2 and a change
of basis from a, b to a#, b#. This implies a change in the coordinates of
the point X from x, y to x#, y#.
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P11 P12 P13

P21 P22 P23

P31 P32 P33

p1

p2

p3

(P,p)=

(a,b,c), origin O

(a’,b’,c’), origin O’

( )
-written by columns

-origin shift 



Transformation of the coordinates of a point X(x,y,z):

-origin shift (P=I): 

-change of basis (p=o) : 

special cases 

1 -1 0

1 1 0

0 0 1

-1/4

-3/4

0
X’=(P,p)-1X=( )3/4

1/4

0

1/4

1/4

0
=

EXAMPLE

=
P11 P12 P13

P21 P22 P23

P31 P32 P33

p1

p2

p3
( )(X’)=(P,p)-1(X)

           =(P-1, -P-1p)(X)

-1
x´

y
z

x

y

z



Determine the coordinates X’ of a  point 
with respect to the new basis 
(a’,b’,c’)= (a,b,c)P, with P=c,a,b. 

0,70

0,31

0,95

X=

(X’)=(P,p)-1(X)Hint

QUICK QUIZ



Covariant and contravariant crystallographic quantities

)P11 P12 P13

P21 P22 P23

P31 P32 P33
((a’,b’,c’)=(a, b, c)P =(a, b, c)

direct or crystal basis

=
P11 P12 P13

P21 P22 P23

P31 P32 P33
( )-1a*’

b*’
c*’

a*
b*
c*

= P-1

a*
b*
c*

reciprocal or dual basis

covariant to crystal basis: Miller indices
(h’,k’,l’)=(h, k, l)P

contravariant to crystal basis: indices of a direction [u]

u

v

w

u´

v´
w´

P11 P12 P13

P21 P22 P23

P31 P32 P33

-1)(=



Transformation of symmetry operations (W,w)

original
coordinates

new
coordinates

(W’,w’)=(P,p)-1(W,w)(P,p)



Transformation of the coordinates of a point X(x,y,z):

-origin shift (P=I): 

-change of basis (p=o) : 

special cases 

=
P11 P12 P13

P21 P22 P23

P31 P32 P33

x

y

z

p1

p2

p3
( )(X’)=(P,p)-1(X)

           =(P-1, -P-1p)(X)

-1

Transformation by (P,p) of the unit cell parameters:

metric tensor G:    G´=Pt G P

Transformation of symmetry operations (W,w):

(W’,w’)=(P,p)-1(W,w)(P,p)

x´

y
z



530 ITA settings of orthorhombic 
and monoclinic groups

SYMMETRY DATA 
ITA SETTINGS

Problem:



abc cb̄a Monoclinic axis b
Transf. abc bac̄ Monoclinic axis c

abc ācb Monoclinic axis a
C12/c1 A12/a1 A112/a B112/b B2/b11 C2/c11 Cell type 1

HM C2/c A12/n1 C12/n1 B112/n A112/n C2/n11 B2/n11 Cell type 2
I 12/a1 I 12/c1 I 112/b I 112/a I 2/c11 I 2/b11 Cell type 3

No. HM abc bac̄ cab c̄ba bca ac̄b

33 Pna21 Pna21 Pbn21 P21nb P21cn Pc21n Pn21a

Monoclinic descriptions

Orthorhombic descriptions

SYMMETRY DATA: ITA SETTINGS





ITA-settings
symmetry data

Transformation 
of the basis

Coordinate transformations
Generators
General positions

Problem: GENPOS

space group

Bilbao Crystallographic Server



Example GENPOS: 

default setting C12/c1

final setting A112/a

(W,w)A112/a=
(P,p)-1(W,w)C12/c1(P,p)



Example GENPOS: ITA settings of C2/c(15)

default setting A112/a setting



Problem: WYCKPOS

Transformation 
of the basis

ITA 
settings

space group

Coordinate transformations
Wyckoff positions

Bilbao Crystallographic Server



UNIT CELL 
TRANSFORMATION

CELLTRANProblem:

lattice parameters
hexagonal cell

lattice parameters
monoclinic cell Transformation 

matrix 
(P,p)

G´=PTGP

Bilbao Crystallographic Server



METRIC TENSOR
BOND LENGTHS

BONDING ANGLES



3D-unit cell and lattice parameters

lattice basis: 
{a, b, c} 

unit cell: 
the parallelepiped 

defined by the 
basis vectors 

primitive P and 
centred unit cells:

A,B,C,F, I, R

A

C
B

number of 
lattice points per 

unit cell



{a1, a2, a3}

Metric tensor G

Gik=(ai,ak)=aiakcosαj, 

G11 G12 G13

G21 G22 G23

G31 G32 G33

Given a lattice with a basis:

Gik=Gki

METRIC TENSOR (FUNDAMENTAL MATRIX)

G ={a1, a2, a3}T. {a1, a2, a3}=
a1

a2

a3

.{a1, a2, a3}=

Metric tensor G is symmetric:

Metric tensor G in terms of lattice parameters



(Problem 2.4.5)EXERCISE 

Write down the metric tensors of the seven crystal systems in 
parametric form using the general expressions for their lattice 
parameters. For each of the cases, express the volume of the unit 
cell as a function of the lattice parameters. 

For example: 
tetragonal crystal system: a=b, c, α=β=γ=90

G =
a2 0 0

0 a2 0

0 0 c2

V=?



The seven 3D-crystal systems

V2=det G=



Transformation properties of G under basis transformation

G´={a’1, a’2, a’3}T. {a’1, a’2, a’3}= PT{a1, a2, a3}T. {a1, a2, a3} P

  G´=PT G P

basis transformation: 

 {a’1, a’2, a’3}= {a1, a2, a3} P

Example

cI                                                 cP

1 0 0

0 1 0

0 0 1

-1 1 1
1 -1 1
1 1 -1

P=1/2

3 -1 -1

-1 3 -1

-1 -1 3

GI=a2 GP=a2/4



METRIC TENSORS
Examples



METRIC TENSORSExample



Crystallographic calculations:  Volume of the unit cell



Volume of the unit cell in terms of lattice parameters 
(Buerger,1941)

Basis vectors with respect to Cartesian basis

det (A)=det(AT)

= det (G)



Crystallographic calculations: Distances or Lengths

X

Y

O

r=XY=r1a1+r2a2+r3a3, ri∈ℝ{a1, a2, a3}

r=XY

 r2=(r, r)=(r1a1+r2a2+r3a3, r1a1+r2a2+r3a3)length r of r:

r2=(r1a1,r1a1)+ (r2a2,r2a2)+ (r3a3,r3a3)+2(r2a2,r3a3) +2(r3a3,r1a1) +2(r1a1,r2a2)

r2=r12a12+r22a22+r32a32+2r2r3a2a3cosα1+2r3r1a3a1cosα2+2r1r2a1a2cosα3

orthonormal basis (a1=a2=a3=1, α1= α2= α3=90):

r2=r12+r22+r32



Crystallographic calculations: Distances or Lengths

X

Y

O
{a1, a2, a3}

r=XY

orthonormal basis 
(a1=a2=a3=1, α1= α2= α3=90): G=I

Fundamental matrix
(metric tensor)

Gik=(ai,ak)=aiakcosαj, 

G=
G11 G12 G13

G21 G22 G23

G31 G32 G33

Given a basis:

Gik=Gki

 r2=(r, r)=rTGr
length of a vector:

 r2=rTGr=rTr

r2=r12a12+r22a22+r32a32+2r2r3a2a3cosα1+2r3r1a3a1cosα2+2r1r2a1a2cosα3

length r of r: r2=(r,r)



Crystallographic calculations: Bonding angle

orthonormal basis:



Crystallographic calculations: Bonding angle

{a1, a2, a3}

Fundamental matrix
(metric tensor)

Gik=(ai,ak)=aiakcosαj, 

G=
G11 G12 G13

G21 G22 G23

G31 G32 G33

Given a basis:

Gik=Gki

bonding angle:

 (r,t)=rTGt


