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The quantum Hamiltonian

Instead of solving the classical equations of motion, we need to solve the
Schrödinger equation

Hi |Ψi
β〉 =

[
T̂i + V (R̂)

]
|Ψi
β〉 = Eβ |Ψi

β〉

The operator symbol has been included for the kinetic energy and the position
operator

The Taylor expansion of the potential is valid so that

V (R̂) = V (R0) + V2(R̂) + V3(R̂) + V4(R̂) + · · · ,

Vn(R̂) =
1

n!

∑
a1···an

(n)

φ a1···an (R̂a1 − Ra10) · · · (R̂an − Ran0)
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The quantum Hamiltonian in the harmonic approximation

In the harmonic approximation the potential is truncated at second order:

Hi = T̂i +
1

2

∑
ab

(2)

φ ab(R̂a − Ra0)(R̂b − Rb0) =
∑
a

p̂2
a

2Ma
+

1

2

∑
ab

(2)

φ abûaûb

where p̂ is the momentum operator

We have defined the displacement operator simply as

ûa = R̂a − Ra0

which measures the displacement from the reference position
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The quantum Hamiltonian in the normal mode basis

We perform the transformation to the normal mode basis with this transformation
of the position and momentum operators

ûa =
∑
µ

eaµ√
Ma

Q̂µ

p̂a =
∑
µ

√
Mae

a
µP̂µ

where ∑
b

(2)

φ ab√
MaMb

ebµ = ω2
µe

a
µ

and Q̂µ and P̂µ are the normal displacement and momentum operators in the
normal mode basis

The Hamiltonian becomes a sum of 3Nat independent harmonic oscillators

Hi =
∑
µ

1

2

(
P̂2
µ + ω2

µQ̂
2
µ

)
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The quantum Hamiltonian in the normal mode basis in
reciprocal space

In reciprocal space we can also do the same:

ûa(T a) =
1√
N

∑
qµ

eaµ(q)
√
Ma

Q̂µ(q)e−iq·T a

p̂a(T a) =
1√
N

∑
qµ

√
Mae

a
µ(q)P̂µ(q)e−iq·T a

The Hamiltonian becomes a sum of 3Nat independent complex harmonic oscillators

Ĥi =
1

2

∑
µq

(
|P̂µ(q)|2 + ω2

µ|Q̂µ(q)|2
)

Both in real space and reciprocal space the problem is simply to solve the
harmonic oscillator problem

The harmonic problem is a separable Hamiltonian in single-particle Hamiltonians,
in this case harmonic oscillators
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The solution of the harmonic Hamiltonian in quantum
mechanics

Ĥ =
1

2

(
P̂2 + ω2Q̂2

)
We transform the normal mode displacement and momentum operator to ladder
operators:

Q̂ =

√
~

2ω
(b̂ + b̂†)

P̂ = −i
√

~ω
2

(b̂ − b̂†)

which satisfy the bosonic commutation relations [b̂, b̂†] = 1

The Hamiltonian is thus written as

Ĥ = ~ω
(
b̂†b̂ +

1

2

)
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The solution of the harmonic Hamiltonian in quantum
mechanics

The eigenvectors of the Hamiltonian are the Fock states |n〉 with n ≥ 0

Ĥ|n〉 = En|n〉

The ladder operators act on the Fock states as

b̂|n〉 =
√
n|n − 1〉

b̂†|n〉 =
√
n + 1|n + 1〉

The number operator is n̂ = b̂†b̂ and |n〉 is an eigenvector of it

n̂|n〉 = b̂†b̂|n〉 = n|n〉

Thus, the eigenvalues of the quantum harmonic Hamiltonian are

En = ~ω
(
n +

1

2

)
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The solution of the harmonic Hamiltonian in normal mode
coordinates

The Schrödinger equation to be solved for 〈Q|n〉 = Ψn(Q)

−~2

2

d2Ψn(Q)

dQ2
+

1

2
ω2Q2Ψn(Q) = ~ω

(
n +

1

2

)
Ψn(Q)

The solution of this differential equation gives

Ψn(Q) =
1√
2nn!

( ω
π~

)1/4

e−
ωQ2

2~ Hn(
√
ω/~Q)

where Hn(x) are hermite polynomials:

H0(x) = 1

H1(x) = 2x

· · ·
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The solution of the harmonic Hamiltonian in normal mode
coordinates

If n is even, Ψn(Q) is even

If n is odd, Ψn(Q) is odd

The probability defined by each state
is Ψ2

n(Q)

The ground state probability is a
normalized Gaussian

Ψ2
0(Q) =

√
ω

π~
e−

ωQ2

~
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The solution of the harmonic Hamiltonian in normal mode
coordinates
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Solution of the quantum harmonic Hamiltonian for a full
crystal

As the Hamiltonian becomes is sum of 3Nat independent harmonic oscillators

Ĥi =
∑
µ

1

2

(
P̂2
µ + ω2

µQ̂
2
µ

)
and phonons are bosons, we can write

Ĥi |n1 · · · n3Nat 〉 = En1···n3Nat
|n1 · · · n3Nat 〉

Ψn1···n3Nat
(Q) = 〈Q|n1 · · · n3Nat 〉 =

∏
µ

Ψnµ(Qµ)

En1···n3Nat
=

∑
µ

~ωµ
(
nµ +

1

2

)
nµ is the called the occupation of each phonon mode and ωµ is the phonon
frequency

Phonons are the quasiparticles that diagonalize the harmonic Hamiltonian

In this normal mode basis, the ground state probability distribution is a product of
Gaussians

Ψ2
0···0(Q) =

∏
µ

Ψ2
0(Qµ)
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Do quantum harmonic ions fluctuate from
the R0 positions at 0K?



The contribution of ionic vibrations to the free energy

The free energy is
F = E − TS

where E is the total energy and S the entropy

If the ionic system is described by a Hamiltonian H the density matrix is

ρH = e−βH/ZH

where the partition function is

ZH = tr(e−βH)

and β = kBT

Then

E = 〈H〉ρH = tr(HρH)

S = −kB〈ln ρH〉ρH = −kBtr(ρH ln ρH)

F = tr(HρH) +
1

β
tr(ρH ln ρH) = − 1

β
lnZH
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The contribution of ionic vibrations to the free energy in
the harmonic approximation

In the harmonic approximation the partition function can be calculated

ZH = tr(e−βH) =
∑

n1···n3Nat

〈n1 · · · n3Nat |e
−βH |n1 · · · n3Nat 〉

=
∑

n1···n3Nat

〈n1| · · · 〈n3Nat |e
−βH1 · · · e−βH3Nat |n1〉 · · · |n3Nat 〉

where Hi is a single harmonic oscillator Hamiltonian

Then,

ZH =
∏
µ

∑
nµ

e−β~ωµ(nµ+ 1
2

) =
∏
µ

e−β~ωµ/2
∑
nµ

(
e−β~ωµ

)nµ
=
∏
µ

e−β~ωµ/2

1− e−β~ωµ

The free energy in the harmonic approximation is thus

F = − 1

β
lnZH =

∑
µ

[
1

2
~ωµ −

1

β
ln(1 + nB(ωµ))

]
with nB(ω) = 1/(eβ~ω − 1) the Bose-Einstein occupation factor of bosons
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The contribution of ionic vibrations to the free energy in
the harmonic approximation

It is easy to show that

E =
∑
µ

~ωµ
(

1

2
+ nB(ωµ)

)

S =
∑
µ

[
~ωµ
T

nB(ωµ) + kB ln(1 + nB(ωµ))

]

Comparing the equation for the energy with the eigenenergy of the Hamiltonian,∑
µ ~ωµ[nµ + 1

2
], we observe that at thermal equilibrium the occupation of each

normal mode is given by nB(ωµ)
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The Bose-Einstein occupation factor

Only phonon modes with ~ωµ < kBT are occupied
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The Bose-Einstein occupation factor and the quantum or
classical contribution to the energy

The contribution of each mode to the
energy is

Eµ = ~ωµ
(

1

2
+ nB(ωµ)

)
If the mode is largely occupied,
kBT >> ~ωµ

Eµ ∼
1

2
~ωµ + kBT

~ωµ/2 is the quantum contribution

Despite been unoccupied, all modes
have always a quantum contribution

kBT the classical contribution of one
oscillator in statistical mechanics
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If temperature is sufficiently large the
system will behave classically and

Eµ ∼ kBT
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What is the main problem of molecular
dynamics simulations?



The probability distribution function defined by the
harmonic density matrix

The probability to find the ionic system in a general position R can be calculated
from the density matrix as

ρH(R, β) = 〈R|ρH |R〉

As in the harmonic approximation H =
∑

i Hi is separable in the normal mode
basis, the probability in the normal mode basis Q will be a product of the
probability associated to a single oscillator

ρH(Q, β) = 〈Q|ρHi |Q〉

This probability distribution function can be calculated from the differential
equation

−∂ρH(Q, β)

∂β
= H(Q)ρH(Q, β)
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The probability distribution function defined by the
harmonic density matrix

The solution is a Gaussian function (dropping the β dependence)

ρH(Q) =
1√

2πa2
e
− Q2

2a2

where

a2 =
~

2ω
[1 + 2nB(ω)]

At T = 0 nB(ω) = 0 and ρH(Q) = Ψ2
0(Q)

The probability distribution function for the full crystal in normal modes

ρH(Q) =
∏
µ

1√
2πa2

µ

e
−

Q2
µ

2a2
µ

Transforming to the position basis

ρH(R) =
√

det[Ψ−1/(2π)]e−
1
2

∑
ab(Ra−Ra0)Ψ−1

ab
(Rb−Rb0)

where the matrix Ψ−1 is

Ψ−1
ab =

√
MaMb

∑
µ

eaµe
b
µ

a2
µ
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The probability distribution function defined by the
harmonic density matrix

The width of the Gaussian probability is proportional to a2
µ

The higher the frequency the more peaked the distribution, the higher the
temperature the wider
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Quantum statistical averages

Given the density matrix, the quantum statistical average of any operator that just
depends on the ionic positions O(R) can be calculated as

〈O〉ρH = tr(OρH) =

∫
dRO(R)ρH(R)

An example:
The mean square displacement of an ion

〈u2
a〉ρH =

∫
dRu2

a(R)ρH(R) =
∑
µν

eaµe
a
ν

Ma

∫
dQQµQνρH(Q)

=
∑
µν

eaµe
a
ν

Ma

∫
dQQµQν

∏
µ′

1√
2πa2

µ′

e
−

Q2
µ′

2a2
µ′

=
∑
µν

eaµe
a
ν

Ma

∫
dQµdQνQµQν

1√
(2π)2a2

µa2
ν

e
−

Q2
µ

2a2
µ e
− Q2

ν
2a2
ν =

∑
µν

eaµe
a
ν

Ma
δµνa

2
µ

=
∑
µ

eaµe
a
µ

Ma

~
2ωµ

[1 + 2nB(ωµ)]
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The mean square displacement in the quantum and
classical limit

〈u2
a〉ρH =

∑
µ

eaµe
a
µ

Ma

~
2ωµ

[1 + 2nB(ωµ)]

Even at zero temperature (nB(ωµ) = 0) there is displacement

〈u2
a〉ρH =

∑
µ

eaµe
a
µ

Ma

~
2ωµ

,

the zero point motion

In the classical limit (kBT >> ~ω)

〈u2
a〉ρH ∼

∑
µ

eaµe
a
µ

Ma

~
2ωµ

(
1 +

2kBT

~ωµ

)
or even neglecting the quantum contribution

〈u2
a〉ρH ∼

∑
µ

eaµe
a
µ

Ma

kBT

ω2
µ

,

no displacement at zero temperature
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Thermodynamic quantities in the harmonic approximation

Once the energy, entropy, and free energy are known, thermodynamic variables can

be calculated

The constant volume specific heat

CV =

(
∂E

∂T

)
V

= −
(
∂2F

∂T 2

)
V

The constant pressure specific heat

CP =

(
∂H

∂T

)
P

where the enthalpy is H = E + PV and the pressure P = − ∂E
∂V
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The constant volume specific heat

The constant volume specific heat

CV =

(
∂E

∂T

)
V

=
∑
µ

~ωµ
∂nB(ωµ)

∂T

In the classical high-temperature limit nB(ωµ)→ kBT/(~ωµ) and

CV = 3NatkB ,

each mode contributes to the specific heat kB (Dulong and Petit law)

In the low-temperature limit only very low energy modes will contribute to the
specific heat: acoustic modes

CV =
∑
µq

~ωµ(q)
∂nB(ωµ(q))

∂T
∼ Ω

(2π)3

∑
µ

∫
dq~cµ(q̂)q

∂nB(cµ(q̂)q)

∂T

=
Ω

(2π)3

∑
µ

∫
dqdΩq̂~cµ(q̂)q3 ∂nB(cµ(q̂)q)

∂T

where Ωq̂ is the solid angle in reciprocal space
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The constant volume specific heat

Making the x = β~cµ(q̂)q change of variables and defining the average inverse
third power of the acoustic velocities as

1

c3
=

1

3

∑
µ

∫
dΩq̂

4π

1

c3
µ(q̂)

we obtain

CV ∼ Ω
∂

∂T

(kBT )4

(~c)3

3

2π2

∫ ∞
0

dx
x3

ex − 1
=

2π2

5
kB

(
kBT

~c

)3

The low-temperature specific heat is not constant, it goes as T 3 thanks to
quantum effects
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The constant volume specific heat at intermediate
temperatures

The Debye approximation substitutes all phonons branches by three linear modes
with the same ω = ck dispersion and performs the integral in a sphere with radius
qD that contains a total number of N q points

N/Ω = q3
D/(6π2)

Then, making the β~cq = x transformation

CV = 9NkB

(
T

ΘD

)3 ∫ ΘD/T

0

dx
x4ex

(ex − 1)2

where the Debye temperature ΘD is defined as kBΘD = ~cqD
In the Einstein approximation the acoustic modes are approximated as in the Debye
model, but the optical modes are treated without dispersion and frequency ωE

The contribution of each mode to the specific heat is

NkB
(β~ωE )2eβ~ωE

(eβ~ωE − 1)2

Ion Errea Lecture 3 28 / 37



The constant volume specific heat in the Debye and
Einstein models

Ashcroft & Mermin
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The phonon density of states (PDOS)

The PDOS tells as how many phonon modes are with a particular frequency

It is usually given per unit cell

g(ω) =
1

N

∑
µq

δ(ω − ωµ(q))

It can be written as an integral (Ashcorft & Mermin)

g(ω) =
Ω

N

1

(2π)3

∑
µ

∫
dqδ(ω − ωµ(q)) =

Ω

N

1

(2π)3

∑
µ

∫
dS

1

|∇ωµ(q)|

The surface integral is performed on a surface of the first BZ for which ωµ(q) = ω

Regions of the first BZ with non-dispersive phonons will give peaks of the PDOS
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The phonon density of states (PDOS)

Baroni et al., RMP 73, 515 (2001)
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The phonon density of states (PDOS)

The PDOS can be used to calculate many sums over the first BZ that involve
phonon frequencies

The energy per unit cell can be calculated as

E =
1

N

∑
µq

~ωµ(q)

(
1

2
+ nB(ωµ(q))

)

=
1

N

∑
µq

∫ ∞
0

dωδ(ω − ωµ(q))~ω
(

1

2
+ nB(ω)

)

=

∫ ∞
0

dω~ω
(

1

2
+ nB(ω)

)
g(ω)

From the knowledge of the PDOS many thermodynamic variables can be
calculated by numerical integration
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Matsubara Green’s functions

When the we want to study correlation functions of different operators at finite
temperature, we need the Matsubara Green’s function formalism

This is crucial to understand experimental results

Time is complex in Matsubara’s formalism: z

A bosonic correlation function is defined as

A(z) = −〈TzA(z)A(0)〉ρH

where Tz is the time order operator and A(z) = ezH/~Ae−zH/~

Then the Fourier transformed is given by

A(iωn) =

∫ ~β

0

dze iωnzA(z)

with ωn = 2πn
β

the Matsubara phononic frequencies
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The displacement correlation function in the harmonic
approximation

In order to study phononic properties the interesting Green function is the
displacement correlation function

Gab(z) = −
√

MaMb〈Tzua(z)ub(0)〉ρH
In the harmonic approximation, using bosonic ladder operators

Gab(z) = −
∑
µµ′

eaµe
b
µ′

~
2
√
ωµω′µ

〈ezH/~(bµ + b†µ)e−zH/~(bµ′ + b†µ′)〉ρH

Making the use of the properties (see Mahan book)

ezH/~bµe
−zH/~ = bµe

−zωµ and ezH/~b†µe
−zH/~ = b†µe

zωµ

and 〈b†µbµ〉ρH = nB(ωµ), we obtain

Gab(z) = −
∑
µ

eaµe
b
µ

~
2ωµ

[
(nB(ωµ) + 1)e−zωµ + nB(ωµ)ezωµ

]
Performing the Fourier transform to the frequency domain

Gab(iωn) =
∑
µ

eaµe
b
µ

(iωn)2 − ω2
µ
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The displacement correlation function in the harmonic
approximation

It is interesting to note that

G−1
ab (iωn)) = (iωn)2δab −

(2)

φ ab√
MaMb

The 0 frequency limit, integral on time, over the inverse of the correlation function
gives minus the dynamical matrix

G−1
ab (iωn = 0) = −

(2)

φ ab√
MaMb

This is the result expected for thermodynamics, as this corresponds to the static
limit

The same time correlation function (z = 0) is

Gab(z = 0) = −
√

MaMb〈uaub〉ρH = −
∑
µ

eaµe
b
µa

2
µ =

√
MaMbΨab

where the Ψ matrix was already introduced when analyzing the harmonic
probability distribution function
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Exercises

1 Show that in the normal mode basis in reciprocal space the ionic Hamiltonian can
be written as

Hi =
1

2N

∑
µq

(
|P̂µ|2 + ω2

µ|Q̂µ|2
)

2 Show that in the harmonic approximation

E =
∑
µ

~ωµ
(

1

2
+ nB(ωµ)

)

S =
∑
µ

[
~ωµ
T

nB(ωµ) + kB ln(1 + nB(ωµ))

]
3 Show that in the high-temperature limit the contribution to the energy of a

phonon mode is 1
2
~ωµ + kBT

4 Show that N/Ω = q3
D/(6π2) in the Debye approximation

5 Show that the contribution of each optical mode to the specific heat in the

Einstein model is NkB
(β~ωE )2eβ~ωE

(eβ~ωE−1)2
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Exercises

6 Show that in the harmonic approximation the displacement correlation function is
given in the time and frequency domains by

Gab(z) = −
∑
µ

eaµe
b
µ

~
2ωµ

[
(nB(ωµ) + 1)e−zωµ + nB(ωµ)ezωµ

]
Gab(iωn) =

∑
µ

eaµe
b
µ

(iωn)2 − ω2
µ
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