Introduction to the Theory of Lattice Vibrations

and their Ab Initio Calculation
Lecture 3: Quantum theory of lattice vibrations
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o The harmonic Hamiltonian
@ Solving the quantum Hamiltonian in the harmonic approximation

e Thermodynamics in the harmonic approximation
@ Free energy, the density matrix, and the partition function
@ The Bose-Einstein occupation factor
@ Classical and quantum contributions to the energy of phonons
@ The probability distribution function
@ Quantum statistical averages
@ The mean square displacement
@ The constant volume specific heat, Einstein and Debye approximations

e The phonon density of states

e The harmonic phonon Green function and the displacement correlation function

e Exercises
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The quantum Hamiltonian

@ Instead of solving the classical equations of motion, we need to solve the

Schrodinger equation
HIVE) = [T+ V(R)] [W)) = Eslw))

@ The operator symbol has been included for the kinetic energy and the position

operator
@ The Taylor expansion of the potential is valid so that
V(R) = V(Ro)+ Va(R)+ V5(R)+ Va(R) + -,
. 1 (n) R R
VaR) = 3" oy, (Rer = Ruo) - (Roy = Rio)
1'"@n
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quantum Hamiltonian in the harmonic approximation

@ In the harmonic approximation the potential is truncated at second order:

M= 7+ 150 (B — Ro)(B - R o 159 a6
; = '+§§;¢ab( 2 — Rao) (R — Reo) = d 2Ma+§§¢abuaw

where p is the momentum operator

@ We have defined the displacement operator simply as
ﬁa = R’a - RaO

which measures the displacement from the reference position
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quantum Hamiltonian in the normal mode basis

@ We perform the transformation to the normal mode basis with this transformation
of the position and momentum operators

. e A
b=
Pa > VM, P,

where

2 a
e =w,e
Z /MaMb KR

and Q. and P, are the normal displacement and momentum operators in the
normal mode basis

@ The Hamiltonian becomes a sum of 3N, independent harmonic oscillators
1 /45 2 A2
Hi=>5 (PM +quu)
"
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The quantum Hamiltonian in the normal mode basis i

reciprocal space

@ In reciprocal space we can also do the same:

e.(q)

0(T)) = fij 0, (a)e ™
~ 1 a D —iq-T,
P(Ts) = 5D VMaei(a)Pu(a)e

@ The Hamiltonian becomes a sum of 3/,; independent complex harmonic oscillators
. 1 N R
A= 5> (1Pu@) + <2l Quia)P)
nq

@ Both in real space and reciprocal space the problem is simply to solve the
harmonic oscillator problem

@ The harmonic problem is a separable Hamiltonian in single-particle Hamiltonians,
in this case harmonic oscillators
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The solution of the harmonic Hamiltonian in quantum

mechanics

SHERES

@ We transform the normal mode displacement and momentum operator to ladder

operators:
h ~ &
—(b+ bt
\ 25 (P + )

£»
Il

R
I
|
ik
oy
|
>
¥
—

which satisfy the bosonic commutation relations [b, b] = 1

@ The Hamiltonian is thus written as

At (56 1)
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The solution of the harmonic Hamiltonian in quantum

mechanics

@ The eigenvectors of the Hamiltonian are the Fock states |n) with n >0
A|n) = Ed|n)
@ The ladder operators act on the Fock states as

blny = nln—1)
b'iny = Vn+1ln+1)

@ The number operator is A = b'h and |n) is an eigenvector of it
Aln) = b'h|n) = n|n)

@ Thus, the eigenvalues of the quantum harmonic Hamiltonian are
1
En = fuu n-+ 5
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The solution of the harmonic Hamiltonian in normal mode

coordinates

@ The Schrédinger equation to be solved for (Q|n) = W,(Q)

2 52
RV, (Q) | 1

1
2 dQz szQQ\Un(Q) = hw <l7 + 5) V,(Q)

@ The solution of this differential equation gives

(@ = = () e T H(arhe)

where H,(x) are hermite polynomials:

Ho(X) = 1
Hi(x) = 2x
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The solution of the harmonic Hamiltonian in normal mode

coordinates

@ If nis even, W,(Q) is even

@ If nis odd, W,(Q) is odd

@ The probability defined by each state
is W3(Q)

@ The ground state probability is a
normalized Gaussian

2
W2(0) = | Yo
o(Q) whe

lon Errea
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The solution of the harmonic Hamiltonian in normal mode

coordinates

4

Probability

O\ HWHM ~ 2360 a=+]-——

Normal coordinate Q
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Solution of the quantum harmonic Hamiltonian for a full

crystal

@ As the Hamiltonian becomes is sum of 3/N,: independent harmonic oscillators
~ 1 Ao > Ao
B S
I
and phonons are bosons, we can write

/:/i|n1 CemaN,,) = Enl'“"3Nat [ny - nan,)

w”l"'”3Nat(Q) = <Q|n1"'n3/\/at> = H\U"M(Q”)
"

1
E"l"'”3Nat = Zhwu (”u + 5)
"

@ n, is the called the occupation of each phonon mode and w,, is the phonon
frequency

@ Phonons are the quasiparticles that diagonalize the harmonic Hamiltonian
@ In this normal mode basis, the ground state probability distribution is a product of

Gaussians
W3..0(@) = [T w3(Qu)
7
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Do quantum harmonic ions fluctuate from
the Ry positions at 0K?



The contribution of ionic vibrations to the free energy

@ The free energy is
F=E-TS

where E is the total energy and S the entropy

@ If the ionic system is described by a Hamiltonian H the density matrix is

pn=e""/z,
where the partition function is
Zn = tr(e” ")
and S = ks T
@ Then
E = (M), = tr(Hpw)

= —ks(Inpn)p, = —kstr(pwIn pn)

n
I

1 1
tr(Hpn) + Btr(pH Inpy) = 3 In Zy
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The contribution of ionic vibrations to the free energy in

the harmonic approximation

@ In the harmonic approximation the partition function can be calculated

Zy = (e = Z (- nan, e M lny - naw,)
M N3N,
= Z (m] - (man e ™7™ ™Mot |y | ng)
T N3Nt

where H; is a single harmonic oscillator Hamiltonian
@ Then,

o~ Bhw,u/2

[I> e 7rentnsd He‘ﬂh““/QZ(‘ﬂh““) =i
Kooy :

@ The free energy in the harmonic approximation is thus

1 1 1
LD (S = 31+ ma(e)]

with ng(w) = 1/(e®"™ — 1) the Bose-Einstein occupation factor of bosons
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The contribution of ionic vibrations to the free energy in

the harmonic approximation

@ It is easy to show that

E

> s (5 + o))
S = 30| Mn(wn) + ko nla + no(w)

©w

@ Comparing the equation for the energy with the eigenenergy of the Hamiltonian,
>, hwulny + 1], we observe that at thermal equilibrium the occupation of each
normal mode is given by ng(w,)
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The Bose-Einstein occupation factor

@ Only phonon modes with 7w, < kg T are occupied

5 occupied unoccupied

T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
hwlkpT)|
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The Bose-Einstein occupation factor and the quantum or

classical contribution to the energy

@ The contribution of each mode to the
energy is 5 occupied unoccupied
1 N
E, = hwy 5 + ng(wu)
s
@ If the mode is largely occupied, )
ks T >> hw, 21
1 1
E/,A, ~ Emu + kB T \
. . . [:) 00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
@ fw, /2 is the quantum contribution HalknT]
@ Despite been unoccupied, all modes
have always a quantum contribution @ If temperature is sufficiently large the
@ kg T the classical contribution of one system will behave classically and
oscillator in statistical mechanics E.~ksT
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What is the main problem of molecular
dynamics simulations?



The probability distribution function defined by the

harmonic density matrix

@ The probability to find the ionic system in a general position R can be calculated
from the density matrix as

pH(R, B) = (R|pu|R)

@ As in the harmonic approximation H = ). H; is separable in the normal mode
basis, the probability in the normal mode basis Q will be a product of the
probability associated to a single oscillator

pH(Q; B) = (Qlpr|Q)
@ This probability distribution function can be calculated from the differential

equation
_%gw@) = H(Q)pn(Q, )
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The probability distribution function defined by the

harmonic density matrix

@ The solution is a Gaussian function (dropping the 3 dependence)

1 _Q*
pH(Q) = ﬁe 222

where 5
a’ = 0 [1+ 2ng(w)]

@ At T =0 ng(w) =0 and pu(Q) = V3(Q)
@ The probability distribution function for the full crystal in normal modes
2
(@ =] e ™
H =
h \/2ma,

@ Transforming to the position basis
pr(R) = \/det[W—1/(2m)]e 2 Zan(Ra=Ra0)Vp' (Rs—Ren)

where the matrix W™ is

a_ b
e,€
-1 nCp
V= VMM
m
©w
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The probability distribution function defined by the

harmonic density matrix

. . e . . 2
@ The width of the Gaussian probability is proportional to aj,

@ The higher the frequency the more peaked the distribution, the higher the
temperature the wider

1.2 1.2
— hw = 0.2kpT — kpT = 0.1hw
— hw = 05kpT — kpT = 0.5hw
— hw=1kpT — kpT = 1hw
. — hw=8kpT 3 o — kpT = dhw
10 Fixed T" 10 Fixed w

0.8

0.0 0.0

-4 -2 0 2 1 -4 -2 0 2 1
Q [arb. units] Q [arb. units]
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Quantum statistical averages

@ Given the density matrix, the quantum statistical average of any operator that just
depends on the ionic positions O(R) can be calculated as

(0)y, = 1(Opw) = [ dRO(R)pu(R)

@ An example:
The mean square displacement of an ion

W = [ dRE(RIMR Z“ / d4QQ, Qup(Q)

@2,

Zee/dQQ#Qu 1 Zai,
1/2775:1,

N

RSN

€Ly 1 Tk NS
Z /dQudQVQHQVWe e o=y T
v uv

)
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The mean square displacement in the quantum and

classical limit

ee;
(o = 3 o 5 [1+ 2n()]

@ Even at zero temperature (ng(wy) = 0) there is displacement

ZM 2wu

the zero point motion
@ In the classical limit (kg T >> hw)

Z 14 2kg T
M 2‘*’;4 hwy,
or even neglecting the quantum contribution

ene, ke T
N§
H M, w2’
w
P I

a

no displacement at zero temperature
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Thermodynamic quantities in the harmonic approximation

@ Once the energy, entropy, and free energy are known, thermodynamic variables can
be calculated

@ The constant volume specific heat

a - (%) - _(2F
v—\aot),” \at?),

@ The constant pressure specific heat

oH
Cp = (a*r),,
OE

where the enthalpy is H = E + PV and the pressure P = — 53
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The constant volume specific heat

@ The constant volume specific heat
_[(O0E\ Ong(wy)
cv= <8T>V_ZM M 5T

@ In the classical high-temperature limit ng(w,) — kg T /(hw,) and
Cv = 3N,¢ks,

each mode contributes to the specific heat kg (Dulong and Petit law)

@ In the low-temperature limit only very low energy modes will contribute to the
specific heat: acoustic modes

8n3 Wy dng(c
> o) el L 2 )3Z/dqm< )q 22 (5:(2)a)

~ 36’78 1
= & Z/dqu hic.(§)q %

where Q4 is the solid angle in reciprocal space

Cv
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The constant volume specific heat

@ Making the x = Bhic.(g)q change of variables and defining the average inverse
third power of the acoustic velocities as

dQy 1
c3 —3 Z 4t c3(g

we obtain

e} 3 2 3
o (ksT)* 3 s X (kBT)

~ Q= =
T (hc)® 2n2 e 1 5 he

@ The low-temperature specific heat is not constant, it goes as T° thanks to
quantum effects
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The constant volume specific heat at intermediate

temperatures

@ The Debye approximation substitutes all phonons branches by three linear modes
with the same w = ck dispersion and performs the integral in a sphere with radius
gp that contains a total number of N q points

N/Q = qb/(67°)

@ Then, making the Shcq = x transformation

T 3 ©p/T X4ex
Cy = 9Nk —_— dx————
V=9 (e)/ e -1y

where the Debye temperature ©p is defined as ks©p = hegp

@ In the Einstein approximation the acoustic modes are approximated as in the Debye
model, but the optical modes are treated without dispersion and frequency wge

@ The contribution of each mode to the specific heat is

(Bhwe)?e?E
Nkg (ePhwe — 1)2
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The constant volume specific heat in the Debye and

Einstein models

0.8
Debye

--------- Einstein

0.2

T/T,

Ashcroft & Mermin
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The phonon density of states (PDO

The PDOS tells as how many phonon modes are with a particular frequency

It is usually given per unit cell
1
= 36w~ wula)
na
@ It can be written as an integral (Ashcorft & Mermin)

€)= N )32 | daiter e = 32/ 0]

The surface integral is performed on a surface of the first BZ for which w,(q) = w

@ Regions of the first BZ with non-dispersive phonons will give peaks of the PDOS
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The phonon density of states (PDOS)

' P WP oeorse 12220024
I B = R L W
“~ 200 28 .
Iy
g
3, 100 1
g oo s
=
op K X T L X W L Dos
500
[ Alas|
R = s e N | IS
g
= 250 | : .
5 - N N
[
(-
g \ %‘/\
OF K X r L X W L Dos

Baroni et al., RMP 73, 515 (2001)
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The phonon density of states (PDO

@ The PDOS can be used to calculate many sums over the first BZ that involve
phonon frequencies

@ The energy per unit cell can be calculated as

£ = L5 @ (L i)

= o3 [ st - e (3 + nae)

= [ awne (34 ) s(0)

@ From the knowledge of the PDOS many thermodynamic variables can be
calculated by numerical integration
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Matsubara Green's functions

@ When the we want to study correlation functions of different operators at finite
temperature, we need the Matsubara Green's function formalism

@ This is crucial to understand experimental results
@ Time is complex in Matsubara’s formalism: z

@ A bosonic correlation function is defined as
A(z) = —(TzA(2)A(0)) o

where T, is the time order operator and A(z) = e*/"Ae=2H/"

@ Then the Fourier transformed is given by

hs
A(iwn) = / dze'“"* A(z)
0

with w, = % the Matsubara phononic frequencies
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The displacement correlation function in the harmonic

approximation

@ In order to study phononic properties the interesting Green function is the
displacement correlation function

Gab(Z) = *\/WIVIIK Tzua(z)ub(0)>PH

@ In the harmonic approximation using bosonic ladder operators
zH/h —zH/h
Gul) = =3 eie) ﬁ< "B+ bL)e ™ (B + bl )
Wy,
@ Making the use of the properties (see Mahan book)
ezH/hbHe—zH/h _ bue—zwu and ezH/the—zH/ﬁ _ bLezuM

and (bf,by) s, = ne(wy.), we obtain
Gan(z) = Z Ly (”B(Wu) +1)e " + np(w,)e” " |

@ Performing the Fourier transform to the frequency domain
a_b

. e,e
Gav(iwn) = ) (,w)iiﬁwz
i u
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The displacement correlation function in the harmonic

approximation

@ It is interesting to note that
Gazl(iw")) = (iwn)25ab — T
MaMb

@ The 0 frequency limit, integral on time, over the inverse of the correlation function
gives minus the dynamical matrix

G5 (i = 0) = ——2at
ab ( ) MaM
This is the result expected for thermodynamics, as this corresponds to the static

limit

@ The same time correlation function (z = 0) is

Ga(z=0) = —v/M,My( (Ustip) pyy = —Zea b a, =V M.MpV

where the W matrix was already introduced when analyzing the harmonic
probability distribution function
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Exercises

@ Show that in the normal mode basis in reciprocal space the ionic Hamiltonian can
be written as 1
Hr= o 2 (1Pul? +f1Qul?)
]

@ Show that in the harmonic approximation

E = Zﬁw 1 + ng(wy)

nis w
n
hw
S = Z {%ng(w#)+k5|n(l+n5(wu)):|

©w

© Show that in the high-temperature limit the contribution to the energy of a
phonon mode is %ﬁw# + ks T

@ Show that N/Q = g3 /(67?) in the Debye approximation

@ Show that the contribution of each optical mode to the specific heat in the

. . . (Bhwg)?ePwE
Einstein model is ngm
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Exercises

@ Show that in the harmonic approximation the displacement correlation function is
given in the time and frequency domains by

a h —ZW ZW
Gab(z) = — eu"“’ﬁﬂ [(nB(wu) + 1)8 o4 nB(wﬂ)e “jl
m
“w
, €€y
Gas(iwn) = :(ﬁg‘yr:7;5
w " "
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