Introduction to the Theory of Lattice Vibrations and their Ab Initio Calculation Lecture 3: Quantum theory of lattice vibrations

Ion Errea

Dept. Applied Physics, University of the Basque Country (UPV/EHU), San Sebastian, Spain

Centro de Fsica de Materiales (CSIC-UPV/EHU), San Sebastian, Spain

Donostia International Physics Center, San Sebastian, Spain

University of Science and Technology Beijing

March and April 2022

Universidad del País Vasco Euskal Herriko Unibertsitatea

Outline

The harmonic Hamiltonian

• Solving the quantum Hamiltonian in the harmonic approximation

Thermodynamics in the harmonic approximation

- Free energy, the density matrix, and the partition function
- The Bose-Einstein occupation factor
- Classical and quantum contributions to the energy of phonons
- The probability distribution function
- Quantum statistical averages
- The mean square displacement
- The constant volume specific heat, Einstein and Debye approximations

The phonon density of states

The harmonic phonon Green function and the displacement correlation function

Exercises

 Instead of solving the classical equations of motion, we need to solve the Schrödinger equation

$$H_i|\Psi_{\beta}^i\rangle = \left[\hat{T}_i + V(\hat{R})\right]|\Psi_{\beta}^i\rangle = E_{\beta}|\Psi_{\beta}^i\rangle$$

- The operator symbol has been included for the kinetic energy and the position operator
- The Taylor expansion of the potential is valid so that

$$V(\hat{R}) = V(R_0) + V_2(\hat{R}) + V_3(\hat{R}) + V_4(\hat{R}) + \cdots,$$

$$V_n(\hat{R}) = \frac{1}{n!} \sum_{a_1 \cdots a_n} \phi^{(n)}_{a_1 \cdots a_n} (\hat{R}_{a_1} - R_{a_10}) \cdots (\hat{R}_{a_n} - R_{a_n0})$$

• In the harmonic approximation the potential is truncated at second order:

$$H_{i} = \hat{T}_{i} + \frac{1}{2} \sum_{ab} \phi^{(2)}_{ab} (\hat{R}_{a} - R_{a0}) (\hat{R}_{b} - R_{b0}) = \sum_{a} \frac{\hat{p}_{a}^{2}}{2M_{a}} + \frac{1}{2} \sum_{ab} \phi^{(2)}_{ab} \hat{u}_{a} \hat{u}_{b}$$

where $\hat{\pmb{p}}$ is the momentum operator

• We have defined the displacement operator simply as

$$\hat{u}_{a}=\hat{R}_{a}-R_{a0}$$

which measures the displacement from the reference position

The quantum Hamiltonian in the normal mode basis

• We perform the transformation to the normal mode basis with this transformation of the position and momentum operators

$$\hat{u}_{a} = \sum_{\mu} rac{e^{a}_{\mu}}{\sqrt{M_{a}}} \hat{Q}_{\mu}$$
 $\hat{\rho}_{a} = \sum_{\mu} \sqrt{M_{a}} e^{a}_{\mu} \hat{P}_{\mu}$

where

$$\sum_{b} \frac{\phi_{ab}}{\sqrt{M_a M_b}} e^b_\mu = \omega^2_\mu e^a_\mu$$

and \hat{Q}_{μ} and \hat{P}_{μ} are the normal displacement and momentum operators in the normal mode basis

• The Hamiltonian becomes a sum of $3N_{at}$ independent harmonic oscillators

$$H_i = \sum_\mu rac{1}{2} \left(\hat{P}_\mu^2 + \omega_\mu^2 \hat{Q}_\mu^2
ight)$$

The quantum Hamiltonian in the normal mode basis in reciprocal space

• In reciprocal space we can also do the same:

$$\hat{u}_{a}(\boldsymbol{T}_{a}) = \frac{1}{\sqrt{N}} \sum_{\boldsymbol{q}\mu} \frac{e_{\mu}^{a}(\boldsymbol{q})}{\sqrt{M_{a}}} \hat{Q}_{\mu}(\boldsymbol{q}) e^{-i\boldsymbol{q}\cdot\boldsymbol{T}_{a}}$$

$$\hat{p}_{a}(\boldsymbol{T}_{a}) = \frac{1}{\sqrt{N}} \sum_{\boldsymbol{q}\mu} \sqrt{M_{a}} e_{\mu}^{a}(\boldsymbol{q}) \hat{P}_{\mu}(\boldsymbol{q}) e^{-i\boldsymbol{q}\cdot\boldsymbol{T}_{a}}$$

• The Hamiltonian becomes a sum of 3Nat independent complex harmonic oscillators

$$\hat{H}_i = rac{1}{2}\sum_{\muoldsymbol{q}}\left(|\hat{P}_\mu(oldsymbol{q})|^2 + \omega_\mu^2|\hat{Q}_\mu(oldsymbol{q})|^2
ight)$$

- Both in real space and reciprocal space the problem is simply to solve the harmonic oscillator problem
- The harmonic problem is a separable Hamiltonian in single-particle Hamiltonians, in this case harmonic oscillators

The solution of the harmonic Hamiltonian in quantum mechanics

$$\hat{H}=rac{1}{2}\left(\hat{P}^{2}+\omega^{2}\hat{Q}^{2}
ight)$$

 We transform the normal mode displacement and momentum operator to ladder operators:

$$\hat{Q} = \sqrt{rac{\hbar}{2\omega}}(\hat{b}+\hat{b}^{\dagger})$$

 $\hat{P} = -i\sqrt{rac{\hbar\omega}{2}}(\hat{b}-\hat{b}^{\dagger})$

which satisfy the bosonic commutation relations $[\hat{b},\hat{b}^{\dagger}]=1$

• The Hamiltonian is thus written as

$$\hat{H} = \hbar\omega \left(\hat{b}^{\dagger} \hat{b} + \frac{1}{2} \right)$$

The solution of the harmonic Hamiltonian in quantum mechanics

• The eigenvectors of the Hamiltonian are the Fock states $|n\rangle$ with $n\geq 0$

$$\hat{H}|n\rangle = E_n|n\rangle$$

• The ladder operators act on the Fock states as

$$\hat{b}|n
angle = \sqrt{n}|n-1
angle$$

 $\hat{b}^{\dagger}|n
angle = \sqrt{n+1}|n+1$

• The number operator is $\hat{n}=\hat{b}^{\dagger}\hat{b}$ and |n
angle is an eigenvector of it

$$\hat{n}|n\rangle = \hat{b}^{\dagger}\hat{b}|n\rangle = n|n\rangle$$

• Thus, the eigenvalues of the quantum harmonic Hamiltonian are

$$E_n = \hbar \omega \left(n + \frac{1}{2} \right)$$

The solution of the harmonic Hamiltonian in normal mode coordinates

• The Schrödinger equation to be solved for $\langle Q|n
angle=\Psi_n(Q)$

$$-\frac{\hbar^2}{2}\frac{d^2\Psi_n(Q)}{dQ^2}+\frac{1}{2}\omega^2Q^2\Psi_n(Q)=\hbar\omega\left(n+\frac{1}{2}\right)\Psi_n(Q)$$

• The solution of this differential equation gives

$$\Psi_n(Q) = \frac{1}{\sqrt{2^n n!}} \left(\frac{\omega}{\pi \hbar}\right)^{1/4} e^{-\frac{\omega Q^2}{2\hbar}} H_n(\sqrt{\omega/\hbar}Q)$$

where $H_n(x)$ are hermite polynomials:

$$H_0(x) = 1$$

$$H_1(x) = 2x$$

The solution of the harmonic Hamiltonian in normal mode coordinates

- If *n* is even, $\Psi_n(Q)$ is even
- If *n* is odd, $\Psi_n(Q)$ is odd
- The probability defined by each state is Ψ²_n(Q)
- The ground state probability is a normalized Gaussian

$$\Psi_0^2(Q) = \sqrt{rac{\omega}{\pi\hbar}} e^{-rac{\omega Q^2}{\hbar}}$$

The solution of the harmonic Hamiltonian in normal mode coordinates

- 1011	- Free

Solution of the quantum harmonic Hamiltonian for a full crystal

• As the Hamiltonian becomes is sum of $3N_{at}$ independent harmonic oscillators

$$\hat{\mathcal{H}}_i = \sum_\mu rac{1}{2} \left(\hat{\mathcal{P}}_\mu^2 + \omega_\mu^2 \hat{\mathcal{Q}}_\mu^2
ight)$$

and phonons are bosons, we can write

$$\begin{split} \hat{H}_i | n_1 \cdots n_{3N_{at}} \rangle &= E_{n_1 \cdots n_{3N_{at}}} | n_1 \cdots n_{3N_{at}} \rangle \\ \Psi_{n_1 \cdots n_{3N_{at}}} (\boldsymbol{Q}) &= \langle \boldsymbol{Q} | n_1 \cdots n_{3N_{at}} \rangle &= \prod_{\mu} \Psi_{n_{\mu}} (\boldsymbol{Q}_{\mu}) \\ E_{n_1 \cdots n_{3N_{at}}} &= \sum_{\mu} \hbar \omega_{\mu} \left(n_{\mu} + \frac{1}{2} \right) \end{split}$$

- n_{μ} is the called the occupation of each phonon mode and ω_{μ} is the phonon frequency
- Phonons are the quasiparticles that diagonalize the harmonic Hamiltonian
- In this normal mode basis, the ground state probability distribution is a product of Gaussians

$$\Psi^2_{0\cdots 0}({oldsymbol Q})=\prod_\mu \Psi^2_0(Q_\mu)$$

Ion Errea

Lecture 3

Do quantum harmonic ions fluctuate from the R_0 positions at 0K?

The contribution of ionic vibrations to the free energy

• The free energy is

$$F = E - TS$$

where E is the total energy and S the entropy

• If the ionic system is described by a Hamiltonian H the density matrix is

$$\rho_H = e^{-\beta H} / Z_H$$

where the partition function is

$$Z_H = \operatorname{tr}(e^{-\beta H})$$

and $\beta = k_B T$

Then

$$E = \langle H \rangle_{\rho_H} = \operatorname{tr}(H\rho_H)$$

$$S = -k_B \langle \ln \rho_H \rangle_{\rho_H} = -k_B \operatorname{tr}(\rho_H \ln \rho_H)$$

$$F = \operatorname{tr}(H\rho_H) + \frac{1}{\beta} \operatorname{tr}(\rho_H \ln \rho_H) = -\frac{1}{\beta} \ln Z_H$$

The contribution of ionic vibrations to the free energy in the harmonic approximation

In the harmonic approximation the partition function can be calculated

$$Z_{H} = \operatorname{tr}(e^{-\beta H}) = \sum_{n_{1}\cdots n_{3N_{at}}} \langle n_{1}\cdots n_{3N_{at}} | e^{-\beta H} | n_{1}\cdots n_{3N_{at}} \rangle$$
$$= \sum_{n_{1}\cdots n_{3N_{at}}} \langle n_{1} | \cdots \langle n_{3N_{at}} | e^{-\beta H_{1}} \cdots e^{-\beta H_{3N_{at}}} | n_{1} \rangle \cdots | n_{3N_{at}} \rangle$$

where H_i is a single harmonic oscillator Hamiltonian

• Then,

$$Z_{H} = \prod_{\mu} \sum_{n_{\mu}} e^{-\beta \hbar \omega_{\mu} (n_{\mu} + \frac{1}{2})} = \prod_{\mu} e^{-\beta \hbar \omega_{\mu}/2} \sum_{n_{\mu}} \left(e^{-\beta \hbar \omega_{\mu}} \right)^{n_{\mu}} = \prod_{\mu} \frac{e^{-\beta \hbar \omega_{\mu}/2}}{1 - e^{-\beta \hbar \omega_{\mu}}}$$

• The free energy in the harmonic approximation is thus

$$F = -rac{1}{eta} \ln Z_H = \sum_\mu \left[rac{1}{2} \hbar \omega_\mu - rac{1}{eta} \ln(1 + n_B(\omega_\mu))
ight]$$

with $n_{B}(\omega)=1/(e^{eta\hbar\omega}-1)$ the Bose-Einstein occupation factor of bosons

The contribution of ionic vibrations to the free energy in the harmonic approximation

It is easy to show that

$$E = \sum_{\mu} \hbar \omega_{\mu} \left(\frac{1}{2} + n_B(\omega_{\mu}) \right)$$

$$S = \sum_{\mu} \left[\frac{\hbar \omega_{\mu}}{T} n_B(\omega_{\mu}) + k_B \ln(1 + n_B(\omega_{\mu})) \right]$$

• Comparing the equation for the energy with the eigenenergy of the Hamiltonian, $\sum_{\mu} \hbar \omega_{\mu} [n_{\mu} + \frac{1}{2}]$, we observe that at thermal equilibrium the occupation of each normal mode is given by $n_B(\omega_{\mu})$

The Bose-Einstein occupation factor

• Only phonon modes with $\hbar\omega_{\mu} < k_{B}T$ are occupied

The Bose-Einstein occupation factor and the quantum or classical contribution to the energy

• The contribution of each mode to the energy is

$$E_{\mu} = \hbar \omega_{\mu} \left(\frac{1}{2} + n_B(\omega_{\mu}) \right)$$

If the mode is largely occupied,
 k_BT >> ħω_μ

$${\it E}_{\mu} \sim rac{1}{2} \hbar \omega_{\mu} + {\it k}_{B} \, T$$

- $\hbar\omega_{\mu}/2$ is the quantum contribution
- Despite been unoccupied, all modes have always a quantum contribution
- k_B T the classical contribution of one oscillator in statistical mechanics

• If temperature is sufficiently large the system will behave classically and

$$E_{\mu} \sim k_B T$$

What is the main problem of molecular dynamics simulations?

The probability distribution function defined by the harmonic density matrix

• The probability to find the ionic system in a general position *R* can be calculated from the density matrix as

$$\rho_H(\boldsymbol{R},\beta) = \langle \boldsymbol{R} | \rho_H | \boldsymbol{R} \rangle$$

As in the harmonic approximation H = ∑_i H_i is separable in the normal mode basis, the probability in the normal mode basis Q will be a product of the probability associated to a single oscillator

$$\rho_H(Q,\beta) = \langle Q | \rho_{H_i} | Q \rangle$$

• This probability distribution function can be calculated from the differential equation

$$-\frac{\partial \rho_{H}(Q,\beta)}{\partial \beta} = H(Q)\rho_{H}(Q,\beta)$$

The probability distribution function defined by the harmonic density matrix

• The solution is a Gaussian function (dropping the β dependence)

$$\rho_H(Q) = \frac{1}{\sqrt{2\pi a^2}} e^{-\frac{Q^2}{2a^2}}$$

where

$$a^2=rac{\hbar}{2\omega}\left[1+2n_B(\omega)
ight]$$

• At T = 0 $n_B(\omega) = 0$ and $\rho_H(Q) = \Psi_0^2(Q)$

The probability distribution function for the full crystal in normal modes

$$\rho_{H}(\boldsymbol{Q}) = \prod_{\mu} \frac{1}{\sqrt{2\pi a_{\mu}^2}} e^{-\frac{Q_{\mu}^2}{2a_{\mu}^2}}$$

Transforming to the position basis

$$\rho_{H}(\boldsymbol{R}) = \sqrt{\det[\boldsymbol{\Psi}^{-1}/(2\pi)]} e^{-\frac{1}{2}\sum_{ab}(R_{a}-R_{a0})\Psi_{ab}^{-1}(R_{b}-R_{b0})}$$

where the matrix Ψ^{-1} is

$$\Psi_{ab}^{-1}=\sqrt{M_aM_b}\sum_\mu rac{e_\mu^a e_\mu^b}{a_\mu^2}$$

The probability distribution function defined by the harmonic density matrix

- The width of the Gaussian probability is proportional to a_{μ}^2
- The higher the frequency the more peaked the distribution, the higher the temperature the wider

Ion Errea

Lecture 3

Quantum statistical averages

• Given the density matrix, the quantum statistical average of any operator that just depends on the ionic positions $O(\mathbf{R})$ can be calculated as

$$\langle O \rangle_{\rho_H} = \operatorname{tr}(O\rho_H) = \int d\boldsymbol{R} O(\boldsymbol{R}) \rho_H(\boldsymbol{R})$$

An example:

The mean square displacement of an ion

$$\begin{split} \dot{q} u_{a}^{2} \rangle_{\rho_{H}} &= \int dR u_{a}^{2}(R) \rho_{H}(R) = \sum_{\mu\nu} \frac{e_{\mu}^{a} e_{\nu}^{a}}{M_{a}} \int dQ Q_{\mu} Q_{\nu} \rho_{H}(Q) \\ &= \sum_{\mu\nu} \frac{e_{\mu}^{a} e_{\nu}^{a}}{M_{a}} \int dQ Q_{\mu} Q_{\nu} \prod_{\mu'} \frac{1}{\sqrt{2\pi a_{\mu'}^{2}}} e^{-\frac{Q_{\mu'}^{2}}{2a_{\nu'}^{2}}} \\ &= \sum_{\mu\nu} \frac{e_{\mu}^{a} e_{\nu}^{a}}{M_{a}} \int dQ_{\mu} dQ_{\nu} Q_{\mu} Q_{\nu} \frac{1}{\sqrt{(2\pi)^{2} a_{\mu}^{2} a_{\nu}^{2}}} e^{-\frac{Q_{\mu}^{2}}{2a_{\nu}^{2}}} e^{-\frac{Q_{\mu}^{2}}{2a_{\nu}^{2}}} = \sum_{\mu\nu} \frac{e_{\mu}^{a} e_{\nu}^{a}}{M_{a}} \delta_{\mu\nu} a_{\mu}^{2} \\ &= \sum_{\mu} \frac{e_{\mu}^{a} e_{\mu}^{a}}{M_{a}} \frac{\hbar}{2\omega_{\mu}} \left[1 + 2n_{B}(\omega_{\mu}) \right] \end{split}$$

The mean square displacement in the quantum and classical limit

$$\langle u_a^2
angle_{
ho_H} = \sum_\mu rac{e_\mu^a e_\mu^a}{M_a} rac{\hbar}{2\omega_\mu} \left[1 + 2n_B(\omega_\mu)
ight]$$

• Even at zero temperature $(n_B(\omega_\mu) = 0)$ there is displacement

$$\langle u_a^2 \rangle_{
ho_H} = \sum_{\mu} \frac{e_{\mu}^a e_{\mu}^a}{M_a} \frac{\hbar}{2\omega_{\mu}},$$

the zero point motion

• In the classical limit (
$$k_B T >> \hbar \omega$$
)

$$\langle u_a^2 \rangle_{
ho_H} \sim \sum_{\mu} \frac{e_{\mu}^a e_{\mu}^a}{M_a} \frac{\hbar}{2\omega_{\mu}} \left(1 + \frac{2k_B T}{\hbar\omega_{\mu}} \right)$$

or even neglecting the quantum contribution

$$\langle u_a^2 \rangle_{
ho_H} \sim \sum_\mu \frac{e_\mu^a e_\mu^a}{M_a} \frac{k_B T}{\omega_\mu^2},$$

no displacement at zero temperature

Ion Errea

- Once the energy, entropy, and free energy are known, thermodynamic variables can be calculated
 - The constant volume specific heat

$$C_V = \left(\frac{\partial E}{\partial T}\right)_V = -\left(\frac{\partial^2 F}{\partial T^2}\right)_V$$

• The constant pressure specific heat

$$C_P = \left(\frac{\partial H}{\partial T}\right)_P$$

where the enthalpy is H = E + PV and the pressure $P = -\frac{\partial E}{\partial V}$

The constant volume specific heat

• The constant volume specific heat

$$C_{V} = \left(\frac{\partial E}{\partial T}\right)_{V} = \sum_{\mu} \hbar \omega_{\mu} \frac{\partial n_{B}(\omega_{\mu})}{\partial T}$$

• In the classical high-temperature limit $n_B(\omega_\mu) \rightarrow k_B T/(\hbar \omega_\mu)$ and

$$C_V = 3N_{at}k_B,$$

each mode contributes to the specific heat k_B (Dulong and Petit law)

 In the low-temperature limit only very low energy modes will contribute to the specific heat: acoustic modes

$$C_{V} = \sum_{\mu q} \hbar \omega_{\mu}(q) \frac{\partial n_{B}(\omega_{\mu}(q))}{\partial T} \sim \frac{\Omega}{(2\pi)^{3}} \sum_{\mu} \int dq \hbar c_{\mu}(\hat{q}) q \frac{\partial n_{B}(c_{\mu}(\hat{q})q)}{\partial T}$$
$$= \frac{\Omega}{(2\pi)^{3}} \sum_{\mu} \int dq d\Omega_{\hat{q}} \hbar c_{\mu}(\hat{q}) q^{3} \frac{\partial n_{B}(c_{\mu}(\hat{q})q)}{\partial T}$$

where $\Omega_{\hat{q}}$ is the solid angle in reciprocal space

Ion Errea

 Making the x = βħc_μ(**q̂**)q change of variables and defining the average inverse third power of the acoustic velocities as

$$rac{1}{c^3} = rac{1}{3} \sum_{\mu} \int rac{d\Omega_{\hat{m{q}}}}{4\pi} rac{1}{c_{\mu}^3(\hat{m{q}})}$$

we obtain

$$C_V \sim \Omega \frac{\partial}{\partial T} \frac{(k_B T)^4}{(\hbar c)^3} \frac{3}{2\pi^2} \int_0^\infty dx \frac{x^3}{e^x - 1} = \frac{2\pi^2}{5} k_B \left(\frac{k_B T}{\hbar c}\right)^3$$

• The low-temperature specific heat is not constant, it goes as T^3 thanks to quantum effects

The constant volume specific heat at intermediate temperatures

 The Debye approximation substitutes all phonons branches by three linear modes with the same ω = ck dispersion and performs the integral in a sphere with radius q_D that contains a total number of N q points

$$N/\Omega = q_D^3/(6\pi^2)$$

• Then, making the $\beta \hbar c q = x$ transformation

$$C_V = 9Nk_B \left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D/T} dx \frac{x^4 e^x}{(e^x - 1)^2}$$

where the Debye temperature Θ_D is defined as $k_B \Theta_D = \hbar c q_D$

- In the Einstein approximation the acoustic modes are approximated as in the Debye model, but the optical modes are treated without dispersion and frequency ω_E
- The contribution of each mode to the specific heat is

$$Nk_Brac{(eta\hbar\omega_E)^2e^{eta\hbar\omega_E}}{(e^{eta\hbar\omega_E}-1)^2}$$

The constant volume specific heat in the Debye and Einstein models

- The PDOS tells as how many phonon modes are with a particular frequency
- It is usually given per unit cell

$$g(\omega) = rac{1}{N} \sum_{\mu oldsymbol{q}} \delta(\omega - \omega_{\mu}(oldsymbol{q}))$$

It can be written as an integral (Ashcorft & Mermin)

$$g(\omega) = \frac{\Omega}{N} \frac{1}{(2\pi)^3} \sum_{\mu} \int d\boldsymbol{q} \delta(\omega - \omega_{\mu}(\boldsymbol{q})) = \frac{\Omega}{N} \frac{1}{(2\pi)^3} \sum_{\mu} \int d\boldsymbol{S} \frac{1}{|\boldsymbol{\nabla}\omega_{\mu}(\boldsymbol{q})|}$$

The surface integral is performed on a surface of the first BZ for which $\omega_{\mu}(q) = \omega$ • Regions of the first BZ with non-dispersive phonons will give peaks of the PDOS

The phonon density of states (PDOS)

Lecture 3

The phonon density of states (PDOS)

- The PDOS can be used to calculate many sums over the first BZ that involve phonon frequencies
- The energy per unit cell can be calculated as

$$E = \frac{1}{N} \sum_{\mu q} \hbar \omega_{\mu}(q) \left(\frac{1}{2} + n_{B}(\omega_{\mu}(q))\right)$$
$$= \frac{1}{N} \sum_{\mu q} \int_{0}^{\infty} d\omega \delta(\omega - \omega_{\mu}(q)) \hbar \omega \left(\frac{1}{2} + n_{B}(\omega)\right)$$
$$= \int_{0}^{\infty} d\omega \hbar \omega \left(\frac{1}{2} + n_{B}(\omega)\right) g(\omega)$$

• From the knowledge of the PDOS many thermodynamic variables can be calculated by numerical integration

- When the we want to study correlation functions of different operators at finite temperature, we need the Matsubara Green's function formalism
- This is crucial to understand experimental results
- Time is complex in Matsubara's formalism: z
- A bosonic correlation function is defined as

$$A(z) = -\langle T_z A(z) A(0) \rangle_{\rho_H}$$

where T_z is the time order operator and $A(z) = e^{zH/\hbar}Ae^{-zH/\hbar}$

• Then the Fourier transformed is given by

$$A(i\omega_n) = \int_0^{\hbar\beta} dz e^{i\omega_n z} A(z)$$

with $\omega_n = \frac{2\pi n}{\beta}$ the Matsubara phononic frequencies

The displacement correlation function in the harmonic approximation

 In order to study phononic properties the interesting Green function is the displacement correlation function

$$G_{ab}(z) = -\sqrt{M_a M_b} \langle T_z u_a(z) u_b(0) \rangle_{
ho_H}$$

In the harmonic approximation, using bosonic ladder operators

$$G_{ab}(z)=-\sum_{\mu\mu'}e^a_\mu e^b_{\mu'}rac{\hbar}{2\sqrt{\omega_\mu\omega'_\mu}}\langle e^{zH/\hbar}(b_\mu+b^\dagger_\mu)e^{-zH/\hbar}(b_{\mu'}+b^\dagger_{\mu'})
angle_{
ho_H}$$

Making the use of the properties (see Mahan book)

$$e^{zH/\hbar}b_{\mu}e^{-zH/\hbar} = b_{\mu}e^{-z\omega_{\mu}}$$
 and $e^{zH/\hbar}b_{\mu}^{\dagger}e^{-zH/\hbar} = b_{\mu}^{\dagger}e^{z\omega_{\mu}}$

and $\langle b^{\dagger}_{\mu}b_{\mu}
angle_{
ho_{H}}=n_{B}(\omega_{\mu})$, we obtain

$$G_{ab}(z) = -\sum_{\mu} e^a_{\mu} e^b_{\mu} rac{\hbar}{2\omega_{\mu}} \left[(n_B(\omega_{\mu}) + 1) e^{-z\omega_{\mu}} + n_B(\omega_{\mu}) e^{z\omega_{\mu}}
ight]$$

Performing the Fourier transform to the frequency domain

$$\mathcal{G}_{ab}(i\omega_n) = \sum_{\mu} rac{e^a_{\mu}e^b_{\mu}}{(i\omega_n)^2 - \omega^2_{\mu}}$$

The displacement correlation function in the harmonic approximation

• It is interesting to note that

$$G_{ab}^{-1}(i\omega_n)) = (i\omega_n)^2 \delta_{ab} - \frac{\phi_{ab}}{\sqrt{M_a M_b}}$$

 The 0 frequency limit, integral on time, over the inverse of the correlation function gives minus the dynamical matrix

$$G_{ab}^{-1}(i\omega_n=0) = -\frac{\overset{(2)}{\phi}_{ab}}{\sqrt{M_aM_b}}$$

This is the result expected for thermodynamics, as this corresponds to the static limit

• The same time correlation function (z = 0) is

$$G_{ab}(z=0)=-\sqrt{M_aM_b}\langle u_au_b
angle_{
ho_H}=-\sum_\mu e^a_\mu e^b_\mu a^2_\mu=\sqrt{M_aM_b}\Psi_{ab}$$

where the Ψ matrix was already introduced when analyzing the harmonic probability distribution function

Ion Errea

Exercises

Show that in the normal mode basis in reciprocal space the ionic Hamiltonian can be written as

$$\mathcal{H}_i = rac{1}{2N}\sum_{\muoldsymbol{q}}\left(|\hat{P}_{\mu}|^2 + \omega_{\mu}^2|\hat{Q}_{\mu}|^2
ight)$$

2 Show that in the harmonic approximation

$$E = \sum_{\mu} \hbar \omega_{\mu} \left(\frac{1}{2} + n_B(\omega_{\mu}) \right)$$

$$S = \sum_{\mu} \left[\frac{\hbar \omega_{\mu}}{T} n_B(\omega_{\mu}) + k_B \ln(1 + n_B(\omega_{\mu})) \right]$$

- 3 Show that in the high-temperature limit the contribution to the energy of a phonon mode is $\frac{1}{2}\hbar\omega_{\mu} + k_{B}T$
- ④ Show that $N/\Omega = q_D^3/(6\pi^2)$ in the Debye approximation
- Show that the contribution of each optical mode to the specific heat in the Einstein model is $Nk_B \frac{(\beta\hbar\omega_E)^2 e^{\beta\hbar\omega_E}}{(e^{\beta\hbar\omega_E}-1)^2}$

Show that in the harmonic approximation the displacement correlation function is given in the time and frequency domains by

$$G_{ab}(z) = -\sum_{\mu} e^{a}_{\mu} e^{b}_{\mu} \frac{\hbar}{2\omega_{\mu}} \left[(n_{B}(\omega_{\mu}) + 1)e^{-z\omega_{\mu}} + n_{B}(\omega_{\mu})e^{z\omega_{\mu}} \right]$$
$$G_{ab}(i\omega_{n}) = \sum_{\mu} \frac{e^{a}_{\mu} e^{b}_{\mu}}{(i\omega_{n})^{2} - \omega^{2}_{\mu}}$$