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REMARKS BEFORE STARTING:

This tutorial is based on different calculations performed with Quantum
Espresso. All the input files are provided in
Lecture5 Phonon Tutorial/TiSe2 DFPT/
Lecture5 Phonon Tutorial/TiSe2 Frozen Phonon/
Lecture5 Phonon Tutorial/BaTiO3 DFPT/
Lecture5 Phonon Tutorial/BaTiO3 Finite Difference/

If you have Quantum Espresso installed you can run these examples
yourself with the scripts called run.sh. If not you can install it yourself
locally in your computer.

I will use matplotlib to plot the phonon spectra so you will need to have
python and matplotlib installed in your computer.

In order to perform the last example you will need to install phonopy. If
you have python you can install it through Conda as
conda install -c conda-forge phonopy



Outline

1 TiSe2 DFPT

2 TiSe2 frozen phonon calculation
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4 BaTiO2 finite displacements calculation
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TiSe2: Crystal structure

Example: TiSe2 DFPT calcultion

A transition metal dichalcogenide with
a layered structure

Crystal structure:

P 3̄m1 (164) space group, (3̄m
point group)
Wyckoff positions

Ti 1a (0, 0, 0)
Se 2d (1/3, 2/3, z)

Structural parameters taken for the
example correspond to ∼ 10 GPa
a = b = 6.239a0 c = 10.353a0

α = β = 90◦ γ = 120◦

z = 0.2832
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TiSe2: Crystal structure

Exercise 1

Determine the number of symmetry
operations with GENPOS

There are 12 symmetry operations

Will forces on atoms vanish by
symmetry?
Use WYCKPOS to help you answer the
question

The force on the Ti atoms in the 2d

Wyckoff positions along the z direction

will not vanish by symmetry. All the rest

will be 0 by symmetry
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TiSe2: DFT calculation

The example can be found in

Lecture5_Phonon_Tutorial/TiSe2_DFPT

QE website:
https:

//www.quantum-espresso.org

We will use the Bilbao
Crystallographic Server to perform the
symmetry analysis and help us in the
calculations:
https://www.cryst.ehu.es

We will use QE to calculate

TA simple DFT KS calculation to get
the electronic density and KS potential

DFPT calculation at Γ

DFPT calculation at M

DFPT calculation at A

DFPT calculation on a regular grid

Fourier transform to calculate force
constants

Fourier transform back to get the
phonon spectrum in a path
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TiSe2: 1BZ and special points

Exercise 2

Open the 1BZ corresponding to TiSe2

crystal with KVEC

Determine a path along
high-symmetry lines with its
coordinates (CDML coordinates)

A possible path along high-symmetry

lines is ΓMKΓALHA
qΓ = (0, 0, 0) = 0

qM = (1/2, 0, 0) =
b1

2

qK = (1/3, 1/3, 0) =
b1

3
+

b2

3

qA = (0, 0, 1/2) =
b3

2

qL = (1/2, 0, 1/2) =
b1

2
+

b3

2

qH = (1/3, 1/3, 1/2) =
b1

3
+

b2

3
+

b3

2
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MECHANICAL REP.

The number of phonon modes expected with different frequencies for a given q
point is determined by symmetry

It coincides with the number of irreps in the little co-group of q present in the
crystal: Mechanical representations

The BCS has the MECHANICAL REP. program to calculate the mechanical
representations for a given q point
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MECHANICAL REP.

Choose the space group and the q point

The mechanical representations decomposed into irreps for each Wyckoff position

At Γ we expect 6 different
irreps:

3 non-degenerate modes
3 doubly-degenerate modes
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TiSe2: modes at q points

Exercise 3
Determine the number of non-degenerate
modes and the expected degeneracies of
TiSe2 at M and A points

The dimension of the irreps are given for the
full representation that contains all the q points
in the star. Thus, the dimension for a given
point should be divided by the number of q
points in the star

M
We expect 9 modes, none of them
degenerate

A
We expect 6 non-degenerate modes: 3
non-degenerate, 3 doubly-degenerate
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TiSe2: DFPT calculation of phonon spectra
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SAM: mode displacement

In order to determine the displacements of
the atoms of a mode at Γ we can use the
SAM program

Ion Errea Lecture 5 12 / 20



SAM: mode displacement

The program tells us for each irrep which are the Wyckoff positions that are
moving
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SAM: mode displacement

Clicking in show it will tell us how each atom moves for each irrep
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SAM: mode displacement for frozen phonon

If a given irrep only involves displcaments of one Wyckoff position the
displacements given by the server correspond to (non-normalized) polarization
vectors of the mode

We can use this info to prepare a frozen phonon calculation of a phonon mode at Γ

ua(Qµ) =
eaν√
Ma

Qµ
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SAM: mode displacement for frozen phonon

Steps to follow to prepare the frozen phonon calculation

1 Get the polarization vectors by renormalizing the vectors given by
the SAM program. For the A1g mode

e(1/3,2/3,z)[A1gΓ] =
1√
2

 0
0
−1

 e(2/3,1/3,−z)[A1gΓ] =
1√
2

0
0
1


2 Build the displacements as a funciton of A. For this mode

u(1/3,2/3,z)[A1gΓ] =
1√

2MSe

 0
0
−1

Q

u(2/3,1/3,−z)[A1gΓ] =
1√

2MSe

0
0
1

Q

3 Calculate the DFT energy for the distorted structure as a
function of Q, and calculate second derivative at Q = 0
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TiSe2: frozen phonon for the A1g mode at Γ
The example can be found in

Lecture5_Phonon_Frozen_Phonon/TiSe2_DFPT
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BaTiO3: DFPT calculation of the phonon spectra in an
insulator
The example can be found in

Lecture5_Phonon_Frozen_Phonon/BaTiO3_DFPT
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BaTiO3: DFT finite displacements calculation of the
phonon spectra in an insulator

The example can be found in
Lecture5_Phonon_Frozen_Phonon/BaTiO3_Finite_Difference

The calculation is performed combining PHONOPY with QE
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BaTiO3: Comparison between DFPT and finite
displacements methods
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