Introduction to the Theory of Lattice Vibrations
and their Ab Initio Calculation

Lecture 6: Measuring phonons and the problems of the
harmonic approximation
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Experimental techniques to measure phonons

@ Spectroscopic techniques valid to obtain phonons at I

o Infrared spectroscopy
@ Raman spectroscopy

@ Diffraction techniques valid to obtain phonons at any g point:

o Inelastic x-ray diffraction
@ Inelastic neutron diffraction
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Inelastic diffraction experiments

@ Inelastic X-ray or neutron scattering
experiments provide the the way to Phonon emission

measure full phonon dispersions F_k_/

@ The incident beam with energy E and Phonon absorption S i
momentum k can emit or absorb a
phonon so that its energy and
momentum shift to £’ and k’ /o——‘
according to energy and crystal £

momentum conservation

< o9

E' = E+hw(q)
K = k+q+G,

" [100) [0} ) ]

§

@ Phonons appear as peaks in the
number of counts

@ The choice of the measurement
momentum k’ determines the q of the
experimentally accessible phonons
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Inelastic scattering experiments

@ Technically difficult

@ It usually requires performing
experiments in large facilities like

syncrotrons Phonon emission Qi
Ek ~
Phonon absorption = ho,(9).q

~ ho,@.q
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Infrared (IR) spectroscopy

Infrared spectroscopy

@ The energy of phonons, of order of ~
10 meV, is in the infrared range

@ IR light is passed through the sample
and recorded on transmission

@ Also phonons can be detected on
reflection, as the reflectivity ia also ‘ i
affected by phonons

@ IR light is absorbed if the incident
light energy matches a phonon s
frequency at I

@ The peaks in the absorption represent
phonon energies

@ Only I point phonons can be detected
because the wave number of incident
light is very small compared to the
size of the BZ
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Raman spectroscopy

Raman scattering

@ Visible light scattered inelastically by a

crystal

@ Light (fiw, k) is absorbed by an
electron, which emits or absorbs a
phonon, and decay inelastically with
(!, K)

hw' = hw hw(q)
k = k+q+G,

@ Stokes scattering when the excited

electron decays emitting light with less

energy and a phonon

@ Anti-Stokes scattering when the
excited electron absorbs a phonon and
decays into light with larger energy

@ k and k' so small that q ~ 0 (T point)
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Raman and IR spectroscopy selection rules

Not all phonon modes at I" are observable in Raman and IR techniques
(W e W) 0

Infrared spectroscopy Raman scattering

@ If the incident IR light has an electric

. . > @ A second-order process (IR first-order
field E, the interaction term between P ( )

the light and the solid is @ The electric dipole in Raman
scattering is determined by the
Hine = —E - d, polarizability tensor A
where d is the dipole moment d=AE

@ Since Hj,: transforms as a vector, only
modes that transform as a vector are
observable with IR Hin: = —EAE,

Thus the interaction Hamiltonian is

@ Since Hj,: transforms as a second rank
symmetric tensor, only modes that
transform as a second rank symmetric
tensor are observable
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Raman and IR spectroscopy selection rules

Not all phonon modes at I" are observable in Raman and IR techniques
(WF" | Hin W) # 0

Infrared spectroscopy Raman scattering

@ If the incident IR light has an electric

. . > @ A second-order process (IR first-order
field E, the interaction term between P ( )

the light and the solid is @ The electric dipole in Raman
scattering is determined by the
Hine = —E - d, polarizability tensor A
where d is the dipole moment d=AE

@ Since Hj,: transforms as a vector, only
modes that transform as a vector are
observable with IR Hin: = —EAE,

Thus the interaction Hamiltonian is

Gross selection rules @ Since Hin: transforms as a second rank
symmetric tensor, only modes that
transform as a second rank symmetric
@ Raman active modes change A tensor are observable

@ IR active modes change d
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Raman and IR spectroscopy selection rules

Modes Activity
This table is a summary of the activity of the different modes of the space group.
Information of the Point Group Oy (m-3m) _ Mg | A | Azg | Aza | Ea| Eq | Tou | Tog | Tru | Trg
Character Table! Infrared . . . . A . . X
’ Raman X . - . Sl x| o X

Onm=3m) | # (1|4 |2]|3]|2|-1|4|m|-3[m functions

Hyper-Raman | - . - x | x| - X - X
Mut. | - (1|6 (|3|8|6|1|6|3(8 _

Note: x = represents the modes which can be detected.

Ag rrfrfa ]| ]| 1] enyez2

Ay ot fafa]ala

Agg Mr( -ttt |-1f1[1]-1

Gross selection rules

Asy T[]t ]afaf1]|a]1]1
g |mt|2|o|2]1|o|2]0]|2|-1]0 |@2xy2x2y?) @ IR active modes change d

By |M5|2|0]2{4]0]-2]0)2/1/0 @ Raman active modes change A

T g [3|-1|[-1]0f1|-3[1|1[0]-1

Ty |5 [3|t|1fo1]a|a|a]|o|1]| ovxyd
T |ro|3[t]A]o|ala|1|1|o]1 (%y.2) |mportant rule of thumb

Tig (31 [afofa|s| 1|0 1]  (edydd

If inversion symmetry is present IR active
modes are not Raman active, and Raman
active modes are not IR active
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Raman and IR spectroscopy selection rules

An example:
Vibrational modes in CO, molecule

Symmetric stretch Asymmetric stretch

@9 99

Bending

>
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Raman and IR spectroscopy selection rules

An example:
Vibrational modes in CO, molecule

Symmetric stretch Asymmetric stretch
no IR active IR active
Raman active no Raman active
Bending
IR active

no Raman active

>
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Cross section in inelastic diffraction experiments

@ The cross section in an inelastic diffraction experiment is proportional to the
dynamical structure factor S(q,w), where the momentum transfer to the system is
hw and the momentum transfer hq

@ The dynamical structure factor is given by (Cowley, “Anharmonic Crystals”, 1968;
Ashcroft & Mermin)

S(g,w) = Ze—:q (Roa—Ro) / dte™" (/7420 giaus()y
9 H

@ At lowest order, keeping the first order in the exponential, it can be shown that

S(q,w) o< o(q,w) = == >~ Im [Gan(q,w + )]
ab

where G,5(q,w + in) is the analytic continuation (iw, — w + in) of the Fourier
transform of the displacement correlation function Gap(iwn)
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Cross section in Raman experiments

@ The cross section in a Raman experiment is very similar to the inelastic diffraction
experiment

@ Again the cross section is proportional to (Elliot et al. RMP 1974) the imaginary
part of the displacement correlation function
S(0,w) o< > CoCoIm [Gop(0, w + in)]
ab
where C; is the effective Raman polarizability

@ Raman scatterin occurs at wave numbers so small that are considere at I
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Phonon contribution to the dielectric function in the

infrared

@ The polarization of a material when an electric field (electronmagnetic wave) is

applied is
= (> Z5 s
b

The response function (polarizability) is calculated consequently as
B Z. *”‘Z;“B :
X (w) = Z =Gan(0,00 + i)

where we have the Fourier transform of the displacement correlation function at I'

@ The dielectric function is then
P (w) = € +amx**(w)

where €~ is the electronic contribution, or, in other words, the high-frequency
limit of the phonon contribution to the dielectric function

@ The optical properties are determined in the infrared again by the correlation
function
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Phonon contribution to the dielectric function in the

infrared

@ The dielectric function allows to calculate optical properties of solids

@ The refraction index na(w) and the extinction coefficient o (w) along direction «
are easily obtained from

Re[e™*(w)] = ni(w) - ra(w)
Im[e**(w)] = 2na(w)ka(w)
@ The reflectivity along direction « is then

(na(w) = 1)* + K& (w)
(na(w) +1)* + r(w)

Ra(w) =
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The inelastic diffraction and Raman cross sections in the

harmonic approximation

@ Both the inelastic diffraction and Raman cross sections are proportional to

o(qw) = —= Y Im[Gu(q,w + in)]

@ In the harmonic approximation
- Z > Im
m

o e.(q) 1 B 1
- ZZI [ Q) <W*wu(q)+’.77 W+"-’u(‘7)+i77)

- WZZQw @) B — (@) - o+ w(a))]

(@) R O

a)e’(q) ]

@ The cross section is a collection of peaks centered at the harmonic phonon
frequencies
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The infrared dielectric function in the harmonic

approximation

@ The calculation can also be performed for the dielectric function analytically
eaﬁ(w) = 4 477)(0‘5(0.2)

@ The response function is anlytical

N Z*az*ﬁ
X () Z =Gap(0,00 + i)

17 €i(0)Z; ek (0)
ZZ NTAT

1 1 1
2w,,(0) (w —w(0) +in  w+w.(0)+ in)

@ This also implies that the imaginary part of the dielectric function is a collection of
Delta peaks in the harmonic approximation
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Experimental diffraction cross sections

The harmonic approximation fails describing the experimental cross sections, they are
not Delta peaks

harmonic (C)
(2+h00.7)
WM_*_ =04
_5 R v —o— 0.35
B g
5 s
L =
[ 2
e [
8 E Rl
(% ¥ e —o— 0,15
0.05
0 5 10 15 20
E, . (MmeV)
joss
Frequency Experiment
Harmonic theory Diego et al., Nat Commun. 12, 598 (2021)
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Experimental dielectric function in the infrared

The harmonic approximation fails describing the experimental cross sections, they are
not Delta peaks

M003:
. Experimental
RB: R, LRB:
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|
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Experiment

Harmonic theory
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Alvarez-Perez et al., Adv. Mater. 32, 1908176 (2020)
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Why the harmonic approximation fails in
the description of experimental signatures
of phonons?



Temperature dependence of pho

—
£
S

2

@ Phonon frequencies in the harmonic
approximation are obtained
diagonalizing the dynamical matrix

(2
d)ab/ \% MaMb

@ As V(R) does not depend on
temperature, force constants do not
depend on temperature and harmonic
phonons are temperature independent

Raman Shift

@ Experimentally phonons do depend on
temperature

@ A big failure of the harmonic theory
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Diamond optical mode at I
Liu et al., PRB 61, 3391 (2000)
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Temperature dependence of phonon frequencies

@ The temperature dependence is

particularly critical close to a
2nd-order displacive phase transition . 8t
(CDW, ferroelectric transition) >
()
NbSe, E
T T T * T T a
z‘ - Yopw . ) 2 J c 4
8 A~ Sy m-w O
o gt 7/ Ne W A4 =
o i o
83 ' * ) 3 © 0
CE 8 u=
§ 41 -W T=250K f _ 0 30 40 50
8 -@ T=50K Y‘"
< A T-33K 0 100 200 300
v T=8K ALA
temperature (K)
0.0 0.1 0.2 0.3 0.4 0.5
(h, 0, 0) (rl.u.) Weber et al., PRL 107, 107403 (2011)
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Quantum or thermal stabilization of structures

@ There are structures that have
imaginary harmonic phonon
frequencies, negative wi eigenvalues Energy
~

(@)
of ¢.p,/vVMaMp

@ This means that the Ry structure is
.. Anharmoni
not at a minimum of V(R), but a Stabilization
local maximum (at least) along e,

@ The structure is unstable in this cases ‘
within the harmonic approximation, it

>

is not the minimum energy structure

L—A

/,

of V(R)
@ But the structure may be stable and

observed experimentally thanks to ‘
quantum or thermal fluctuations

Equilibrium

Harmonic
instability

@ High-temperature symmetric l
structures that undergo CDW of
ferroelectric transitions are an exmaple
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Quantum or thermal stabilization of structures

NbS, 2H phase

BaTiO3 paraelectric phase

BaTiO,

900

1/A (em™)
g
5‘!‘;‘ ’56
1
%a
| 1
E (meV)

Ghosez et al., PRB 60, 836 (1999)

Leroux et al., PRB 86, 155125 (2012)
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If a structure is observed experimentally
at zero Kelvin it must be the lowest
energy structure.

How is it possible that this may not be
the structure which is the minimum of

V(R)?



If a structure is observed experimentally
at zero Kelvin it must be the lowest
energy structure.

How is it possible that this may not be
the structure which is the minimum of

V(R)?
E(R) # V(R)



ctivity of the harmonic crystal

@ Phonons carry heat in solids
@ In the single mode relaxation time approximation, the lattice thermal conductivity
is
1
5= ke T? > vi(@)wi(@)7u(q)ne(w. (@) [ne(w.(a)) + 1]
naq

where v, (q) is the phonon velocity and 7,,(q) is the lifetime of a phonon

harmonic

@ As phonons are quasiparticle that do
not decay in the harmonic
approximation, their lifetime is
infinite, and the lattice thermal
conductivity is infinite

@ Obviously all materials have a finite
thermal conductivity

Spectral Function

@ This is a big breakdown of the
harmonic approximation

Frequency
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@ Phonons in reality are not well-defined
quasiparticles, they are not eigenvalues .

of the (full) ionic Hamiltonian -
qul l/”IqI”
@ The full ionic Hamiltonian, with gt
vq an// v'q
V(R) = Vo(R)+ V3(R) 4+ Va(R) +- - -,
cannot be diagonalized exactly and
does not define infinitely lived 3rd-order vertex 4th-order vertex

quasiparticles
@ Orders in the Taylor expansion beyond the second-order impose phonon-phonon
interaction. This is what we call anharmonicity
@ Since

1 o)
Va(R) =~ 3~ 6p-0y(Ror = Ro) -+ (Ray = Rayo)

n!
aan

(n
a term of order n imposes the interaction between n phonons and the ¢, ..,
force-constants will appear in each vertex
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Electron-phonon interaction

@ The terms neglected in the BO approximation,

AHqor = le i (Ve (RIIPIVE(R)) P+ Z Ve (R) o IW (R)),
imply derivatives of the electronic state with respect to the ionic positions

@ At lowest order, this contribution can be written as a Frolich Hamiltonian:
A o
He— ph = Z Z gmk+q nkcmk+q Cnk (b,uq + bufq)
©nq nmk

where é;fk and G are the electron creation and annihilation operators

@ The electron-phonon matrix elements are

Vs ] [k

i eu (a) (W {
gmk+q,nk Z /72 Mawﬂ mk+q| (q) o

@ Each interacting vertex involves one

phonon and two electrons
n'k+q

@ Each vertex will include the factor nk

Eink+a,nk

mk+q,n . .
electron-phonon interaction
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Self-energy and the Dyson equation

@ The effect of anharmonicity and the electron-phonon interaction can be included
within many-body perturbation theory in the displacement correlation function or
Green's function

Gov(2) = —v/ MaMy( Tes(2)(0)),,
where now H includes anharmonic and/or electron-phonon interactions
@ All the interactions affecting the phonons define the phonon self energy N
@ The interacting Green function can be calculated through Dyson's equation

G(z) = G°(2) + G"(2)N(2)G(2)
@ The non-interacting Green's function is calculated with the harmonic Hp

Gobp(z) = —V/M:Mp(Tua(2)us(0)),

a h —ZWw ZW
-> eﬂeﬁﬂ [(ne(wy) + 1)e ™" + ng(wy)e™"]
§

G(2) G2 G (z) G(2)

lon Errea Lecture 6 28/39



The interacting spectral function

@ The spectral function can be written as

S ) — T

21 2= | (0 = Re[Z,(q, )] + Im[Z,.(q, )]

Im[Z,(q,w)] }
(w+ Re[Z,(q, w)])? + Im[Z,(q, w)]?

where

Zu(q,w) = \/wﬁ(q) +N.(q,w +in)

@ This function would be a Lorentzian if
M, did not depend on w

FWHM =2y

_1 Y
A S e
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The spectral function in the perturbative limit

@ In this limit we can assume that the spectral function decays very fast close to the
peak and we can assume that the self-energy is frequency independent

Nu(g,w+in) ~ N.(q,wu.(q) +in)

@ The spectral function becomes a sum of Lorentzian functions with

Re[Z,.(q,wu(q) + in)] ~ wu(q)+ Re[ﬂu(g;i;z‘(;)l) + in)]

Im([M,(q, wu(q) + in)]
2wu(q)

which has peaks at Re[Z,,(q,w,.(q) + in)] and the half-width at half maximum
(HWHM) is —Im[Z,.(q,w.(q) + in)] for positive frequencies

Im([Z,,(q,w,.(q) + in)]
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The anharmonic self-energy in the perturbative limit

@ In this limit we can assume that the spectral function decays very fast close to the
peak and we can assume that the self-energy is frequency independent

Nu(g,w+in) ~ N.(q,wu.(q) +in)

@ The spectral function becomes a sum of Lorentzian functions with

Re[Z,.(q,wu(q) + in)] ~ wu(q)+ Re[ﬂu(g;i;z‘(;)l) + in)]

Im([M,(q, wu(q) + in)]
2wu(q)

which has peaks at Re[Z,,(q,w,.(q) + in)] and the half-width at half maximum
(HWHM) is —Im[Z,.(q,w.(q) + in)] for positive frequencies

Im([Z,,(q,w,.(q) + in)]
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The spectral function in the perturbative limit

lon Errea

" \\
~2Im[T1, (g, w”(q>)]/<2w,4(q>>,L

w,(q)
o(q,w) / o(q, w)
Interacting | \ Harmonic
[ o
| \ Non-interacting
[

[
| \

0,(@) + Re[IL,(q, 0,@))/ 20,(@))
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anharmonic self-energy in the perturbative limit

@ At the perturbative lowest order there
are 3 diagrams that contribute to the

phonon self-energy: tadpole (T), loop FAERN N
(L), and bubble (B) ! ' ! !
' ! ' ! LT .
@ The self-energy diagrams need to be \',' " ! e .--
constructed with Feyman diagram e - ‘_\.(:'_ i U s
rules and have to be calculated with s w ®)

Matsubara summation techniques (see
Mahan book)
@ These are the self-energy terms

(1) 2 —wu(q G) 2ng(w.(q')) +1
nﬂ(q) = #( ) Z ¢pyy q/7q70)¢yluu(07q7_q)%
vv'q’
w w )
Mua) = 4050 (0 -a.¢ . ~a)@ns(w(a) + 1)
vq’
(B) . —w S .
N.(qw+in) = # > 16 (a.d.—q—q)F(w+inw(q),w (—q-q"))

vu'q’
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The anharmonic self-energy in the perturbative limit

@ In the equation above

(n
D i (Grs

_ Pay - an(Qa ,4q,) eftl1( ql) a,,( q, )
14n) = alz:an VM M., /2w, (ay) - wu,(q,,)
2(w1 + w2)(1 + ne(w1) + ne(w2))

(w1 4+ w2)? — (w+ in)?
2(w1 — w2)(ng(w2) — ng(w1))
(w1 — w2)? — (w + in)?

F(w + in,wy,ws)

_|_

Maradudin and Fein, Phys. Rev. 128, 2589 (1962)
Rousseau and Bergara, PRB 82, 104504 (2010)

lon Errea Lecture 6 34 /39



The electron-phonon self-energy in the perturbative limit

@ At lowest order in the electron-phonon interaction the self-energy is given by the
Migdal diagram

@ In the diagram we have internal electron lines

@ The self-energy is given by

—ph
B g+ iy = 2@ S g = Pk
B\ - k k :
N mk+a,n Enk - Emk+q +w+ m

nmk

Allen and Mitrovic, “Theory of Superconducting Tc”

Grimvall, “The Electron-phonon Interaction in Metals”
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Features of perturbation theory

@ Phonons acquire a finite lifetime due to the interaction with electrons and other
phonons (anharmonicity)

@ Experimental cross sections and optical measurements in the infrared can be
explained thanks to the interactions

@ The lattice thermal conductivity becomes finite

@ Phonon linewidths and frequencies are temperature dependent due to anharmonic
effects, not the electron-phonon interaction

@ The tadpole anharmonic diagram gives thermal expansion and the temperature
dependence of the internal degrees of freedom in the Wyckoff positions
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quasiharmonic approximation

@ The quasiharmonic approximation can give an easy, but aproximate, way to at
least estimate thermal expansion in the crystal and part of the temperature
dependence of phonon frequencies

@ Let's assume the free parameters in a crystal are the lattice degrees of freedom
A ={a,b,c,a,B,7} and some free parameters in the Wyckoff positions
W:{Wth’...}

@ In the quasiharmonic approximation the harmonic free energy is calculated as a
function of these free parameters

F(T,AW)=>" Bhwu(A, w) — % In(1 + ng(w.(A, W)))

@ By minimizing the free energy at a given temperature T in the parameter space
defined by A and W, the evolution with temperature of the free parameters in the
structure can be approximated

@ This is only practically useful if the free parameters are just a few due to symmetry
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The quasiharmonic approximation

FCC Al: Only a the free degree of freedom in the structure

a b c) _x10°
@ L ®a O
024
2100
A 9
g
) 02 g %0
~ 0. 2
=) > g
> ~ o
:é) k’ﬁ.704 g 60
= b 4
2] D -0.6 8
s 340
o
-0.8 Té
o 20
2
10} | E
g 800K
2 1 1 1 L _1'2 1 L L 0 1 1 1 1 L 1 1
60 65 70 75 80 60 65 70 75 80 0 200 400 600 800
Volume (A3) Volume (A3) Temperature (K)

Togo et al., Scripta Materialia 108, 1 (2015)
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Exercises

@ Show that in the harmonic approximation

o(qw)=wd Y me,‘i(—q)eﬁzm) [5(w — w4 (@)) — (w0 + wi(@))]

@ assuming that in the spectral function o(q,w) only diagonal terms contribute
(a = b), calculate the integral
/ dwo(q,w)

—o0
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