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Experimental techniques to measure phonons

Spectroscopic techniques valid to obtain phonons at Γ:

Infrared spectroscopy
Raman spectroscopy

Diffraction techniques valid to obtain phonons at any q point:

Inelastic x-ray diffraction
Inelastic neutron diffraction
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Inelastic diffraction experiments

Inelastic X-ray or neutron scattering
experiments provide the the way to
measure full phonon dispersions

The incident beam with energy E and
momentum k can emit or absorb a
phonon so that its energy and
momentum shift to E ′ and k′

according to energy and crystal
momentum conservation

E ′ = E ± ~ων(q)

k′ = k± q + G,

Phonons appear as peaks in the
number of counts

The choice of the measurement
momentum k′ determines the q of the
experimentally accessible phonons
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Inelastic scattering experiments

Technically difficult

It usually requires performing
experiments in large facilities like
syncrotrons
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Infrared (IR) spectroscopy

Infrared spectroscopy

The energy of phonons, of order of ∼
10 meV, is in the infrared range

IR light is passed through the sample
and recorded on transmission

Also phonons can be detected on
reflection, as the reflectivity ia also
affected by phonons

IR light is absorbed if the incident
light energy matches a phonon
frequency at Γ

The peaks in the absorption represent
phonon energies

Only Γ point phonons can be detected
because the wave number of incident
light is very small compared to the
size of the BZ
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Raman spectroscopy

Raman scattering

Visible light scattered inelastically by a
crystal

Light (~ω, k) is absorbed by an
electron, which emits or absorbs a
phonon, and decay inelastically with
(~ω′, k′)

~ω′ = ~ω ± ~ων(q)

k′ = k± q + G,

Stokes scattering when the excited
electron decays emitting light with less
energy and a phonon

Anti-Stokes scattering when the
excited electron absorbs a phonon and
decays into light with larger energy

k and k′ so small that q ∼ 0 (Γ point)
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Raman and IR spectroscopy selection rules

Not all phonon modes at Γ are observable in Raman and IR techniques

〈Ψion
f |Hint |Ψion

i 〉 6= 0

Infrared spectroscopy

If the incident IR light has an electric
field E, the interaction term between
the light and the solid is

Hint = −E · d,

where d is the dipole moment

Since Hint transforms as a vector, only
modes that transform as a vector are
observable with IR

Gross selection rules

IR active modes change d

Raman active modes change Λ

Raman scattering

A second-order process (IR first-order)

The electric dipole in Raman
scattering is determined by the
polarizability tensor Λ

d = ΛE

Thus the interaction Hamiltonian is

Hint = −EΛE,

Since Hint transforms as a second rank
symmetric tensor, only modes that
transform as a second rank symmetric
tensor are observable
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Raman and IR spectroscopy selection rules

Gross selection rules

IR active modes change d

Raman active modes change Λ

Important rule of thumb
If inversion symmetry is present IR active
modes are not Raman active, and Raman
active modes are not IR active

Ion Errea Lecture 6 9 / 39



Raman and IR spectroscopy selection rules

An example:
Vibrational modes in CO2 molecule

Symmetric	stretch	
	

Asymmetric	stretch	
	

Bending	
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Raman and IR spectroscopy selection rules

An example:
Vibrational modes in CO2 molecule

Symmetric	stretch	
	

no	IR	ac(ve	
Raman	ac(ve		

Asymmetric	stretch	
	

IR	ac(ve	
no	Raman	ac(ve		

Bending	
	

IR	ac(ve	
no	Raman	ac(ve		
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Cross section in inelastic diffraction experiments

The cross section in an inelastic diffraction experiment is proportional to the
dynamical structure factor S(q, ω), where the momentum transfer to the system is
~ω and the momentum transfer ~q
The dynamical structure factor is given by (Cowley, “Anharmonic Crystals”, 1968;
Ashcroft & Mermin)

S(q, ω) =
∑
ab

e−iq·(R0a−R0a)

∫ ∞
−∞

dte iωt〈e iqua(0)e iqub(t)〉ρH

At lowest order, keeping the first order in the exponential, it can be shown that

S(q, ω) ∝ σ(q, ω) = −ω
π

∑
ab

Im [Gab(q, ω + iη)]

where Gab(q, ω + iη) is the analytic continuation (iωn → ω + iη) of the Fourier
transform of the displacement correlation function Gab(iωn)
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Cross section in Raman experiments

The cross section in a Raman experiment is very similar to the inelastic diffraction
experiment

Again the cross section is proportional to (Elliot et al. RMP 1974) the imaginary
part of the displacement correlation function

S(0, ω) ∝
∑
ab

CaCbIm [Gab(0, ω + iη)]

where Ca is the effective Raman polarizability

Raman scatterin occurs at wave numbers so small that are considere at Γ
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Phonon contribution to the dielectric function in the
infrared

The polarization of a material when an electric field (electronmagnetic wave) is
applied is

Pα = 〈
∑
b

Z∗αb ub〉ρH

The response function (polarizability) is calculated consequently as

χαβ(ω) = −N

Ω
e2
∑
ab

Z∗αa Z∗βb√
MaMb

Gab(0, ω + iη)

where we have the Fourier transform of the displacement correlation function at Γ

The dielectric function is then

εαβ(ω) = εαβ∞ + 4πχαβ(ω)

where ε∞ is the electronic contribution, or, in other words, the high-frequency
limit of the phonon contribution to the dielectric function

The optical properties are determined in the infrared again by the correlation
function
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Phonon contribution to the dielectric function in the
infrared

The dielectric function allows to calculate optical properties of solids

The refraction index nα(ω) and the extinction coefficient κα(ω) along direction α
are easily obtained from

Re [εαα(ω)] = n2
α(ω)− κ2

α(ω)

Im [εαα(ω)] = 2nα(ω)κα(ω)

The reflectivity along direction α is then

Rα(ω) =
(nα(ω)− 1)2 + κ2

α(ω)

(nα(ω) + 1)2 + κ2
α(ω)
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The inelastic diffraction and Raman cross sections in the
harmonic approximation

Both the inelastic diffraction and Raman cross sections are proportional to

σ(q, ω) = −ω
π

∑
ab

Im [Gab(q, ω + iη)]

In the harmonic approximation

σ(q, ω) = −ω
π

∑
ab

∑
µ

Im

[
eaµ(−q)ebµ(q)

(ω + iη)2 − ω2
µ(q)

]

= −ω
∑
ab

∑
µ

Im

[
eaµ(−q)ebµ(q)

2ωµ(q)

(
1

ω − ωµ(q) + iη
− 1

ω + ωµ(q) + iη

)]

= ω
∑
ab

∑
µ

1

2ωµ(q)
eaµ(−q)ebµ(q) [δ(ω − ωµ(q))− δ(ω + ωµ(q))]

The cross section is a collection of peaks centered at the harmonic phonon
frequencies
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The infrared dielectric function in the harmonic
approximation

The calculation can also be performed for the dielectric function analytically

εαβ(ω) = εαβ∞ + 4πχαβ(ω)

The response function is anlytical

χαβ(ω) = −N

Ω
e2
∑
ab

Z∗αa Z∗βb√
MaMb

Gab(0, ω + iη)

= −N

Ω
e2
∑
ab

∑
µ

Z∗αa eaµ(0)Z∗βb ebµ(0)
√
MaMb

× 1

2ωµ(0)

(
1

ω − ωµ(0) + iη
− 1

ω + ωµ(0) + iη

)
This also implies that the imaginary part of the dielectric function is a collection of
Delta peaks in the harmonic approximation

Ion Errea Lecture 6 16 / 39



Experimental diffraction cross sections

The harmonic approximation fails describing the experimental cross sections, they are
not Delta peaks
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Experiment
Diego et al., Nat Commun. 12, 598 (2021)
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Experimental dielectric function in the infrared

The harmonic approximation fails describing the experimental cross sections, they are
not Delta peaks
MoO3:
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Alvarez-Perez et al., Adv. Mater. 32, 1908176 (2020)
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Why the harmonic approximation fails in
the description of experimental signatures

of phonons?



Temperature dependence of phonon frequencies

Phonon frequencies in the harmonic
approximation are obtained
diagonalizing the dynamical matrix
(2)

φ ab/
√
MaMb

As V (R) does not depend on
temperature, force constants do not
depend on temperature and harmonic
phonons are temperature independent

Experimentally phonons do depend on
temperature

A big failure of the harmonic theory

Diamond optical mode at Γ
Liu et al., PRB 61, 3391 (2000)
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Temperature dependence of phonon frequencies

The temperature dependence is
particularly critical close to a
2nd-order displacive phase transition
(CDW, ferroelectric transition)

NbSe2

Weber et al., PRL 107, 107403 (2011)
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Quantum or thermal stabilization of structures

There are structures that have
imaginary harmonic phonon
frequencies, negative ω2

µ eigenvalues

of
(2)

φ ab/
√
MaMb

This means that the R0 structure is
not at a minimum of V (R), but a
local maximum (at least) along eµ
The structure is unstable in this cases
within the harmonic approximation, it
is not the minimum energy structure
of V (R)

But the structure may be stable and
observed experimentally thanks to
quantum or thermal fluctuations

High-temperature symmetric
structures that undergo CDW of
ferroelectric transitions are an exmaple
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Quantum or thermal stabilization of structures

BaTiO3 paraelectric phase

Ghosez et al., PRB 60, 836 (1999)

NbS2 2H phase

Leroux et al., PRB 86, 155125 (2012)
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If a structure is observed experimentally
at zero Kelvin it must be the lowest

energy structure.
How is it possible that this may not be
the structure which is the minimum of

V (R)?

E (R) 6= V (R)
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Infinite lattice thermal conductivity of the harmonic crystal

Phonons carry heat in solids

In the single mode relaxation time approximation, the lattice thermal conductivity
is

κ =
1

ΩkBT 2

∑
µq

v 2
µ(q)ω2

µ(q)τµ(q)nB(ωµ(q))[nB(ωµ(q)) + 1]

where vµ(q) is the phonon velocity and τµ(q) is the lifetime of a phonon

As phonons are quasiparticle that do
not decay in the harmonic
approximation, their lifetime is
infinite, and the lattice thermal
conductivity is infinite

Obviously all materials have a finite
thermal conductivity

This is a big breakdown of the
harmonic approximation
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Anharmonicity

Phonons in reality are not well-defined
quasiparticles, they are not eigenvalues
of the (full) ionic Hamiltonian

The full ionic Hamiltonian, with
V (R) = V2(R) +V3(R) +V4(R) + · · · ,
cannot be diagonalized exactly and
does not define infinitely lived
quasiparticles

3rd-order vertex 4th-order vertex

Orders in the Taylor expansion beyond the second-order impose phonon-phonon
interaction. This is what we call anharmonicity

Since

Vn(R) =
1

n!

∑
a1···an

(n)

φ a1···an (Ra1 − Ra10) · · · (Ran − Ran0)

a term of order n imposes the interaction between n phonons and the
(n)

φ a1···an
force-constants will appear in each vertex
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Electron-phonon interaction

The terms neglected in the BO approximation,

∆Hαα′ =
∑
I

1

MI
〈Ψe

α′(R)|P I |Ψe
α(R)〉P I +

∑
I

〈Ψe
α′(R)| P2

I

2MI
|Ψe
α(R)〉,

imply derivatives of the electronic state with respect to the ionic positions

At lowest order, this contribution can be written as a Frölich Hamiltonian:

He−ph =
1√
N

∑
µq

∑
nmk

gµmk+q,nkĉ
†
mk+qĉnk

(
b̂µq + b̂†µ−q

)
where ĉ†nk and ĉnk are the electron creation and annihilation operators

The electron-phonon matrix elements are

gµmk+q,nk =
∑
a

εaµ(q)√
2Maωµ(q)

〈ψmk+q|
[
∂VKS

∂ua(q)

]
u=0

|ψnk〉

Each interacting vertex involves one
phonon and two electrons

Each vertex will include the factor
gµmk+q,nk

electron-phonon interaction
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Self-energy and the Dyson equation

The effect of anharmonicity and the electron-phonon interaction can be included
within many-body perturbation theory in the displacement correlation function or
Green’s function

Gab(z) = −
√

MaMb〈Tzua(z)ub(0)〉ρH
where now H includes anharmonic and/or electron-phonon interactions

All the interactions affecting the phonons define the phonon self energy Π

The interacting Green function can be calculated through Dyson’s equation

G(z) = G 0(z) + G 0(z)Π(z)G(z)

The non-interacting Green’s function is calculated with the harmonic H0

G 0
ab(z) = −

√
MaMb〈Tzua(z)ub(0)〉ρH0

= −
∑
µ

eaµe
b
µ

~
2ωµ

[
(nB(ωµ) + 1)e−zωµ + nB(ωµ)ezωµ

]
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The interacting spectral function

The spectral function can be written as

σ(q, ω) =
1

2π

∑
µ

[
−Im[Zµ(q, ω)]

(ω − Re[Zµ(q, ω)])2 + Im[Zµ(q, ω)]2

+
Im[Zµ(q, ω)]

(ω + Re[Zµ(q, ω)])2 + Im[Zµ(q, ω)]2

]
where

Zµ(q, ω) =
√
ω2
µ(q) + Πµ(q, ω + iη)

This function would be a Lorentzian if
Πµ did not depend on ω

f (x) =
1

π

γ

(x − x0)2 + γ2
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The spectral function in the perturbative limit

In this limit we can assume that the spectral function decays very fast close to the
peak and we can assume that the self-energy is frequency independent

Πµ(q, ω + iη) ∼ Πµ(q, ωµ(q) + iη)

The spectral function becomes a sum of Lorentzian functions with

Re[Zµ(q, ωµ(q) + iη)] ∼ ωµ(q) +
Re[Πµ(q, ωµ(q) + iη)]

2ωµ(q)

Im[Zµ(q, ωµ(q) + iη)] ∼ Im[Πµ(q, ωµ(q) + iη)]

2ωµ(q)

which has peaks at Re[Zµ(q, ωµ(q) + iη)] and the half-width at half maximum
(HWHM) is −Im[Zµ(q, ωµ(q) + iη)] for positive frequencies
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The anharmonic self-energy in the perturbative limit

In this limit we can assume that the spectral function decays very fast close to the
peak and we can assume that the self-energy is frequency independent

Πµ(q, ω + iη) ∼ Πµ(q, ωµ(q) + iη)

The spectral function becomes a sum of Lorentzian functions with

Re[Zµ(q, ωµ(q) + iη)] ∼ ωµ(q) +
Re[Πµ(q, ωµ(q) + iη)]

2ωµ(q)

Im[Zµ(q, ωµ(q) + iη)] ∼ Im[Πµ(q, ωµ(q) + iη)]
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which has peaks at Re[Zµ(q, ωµ(q) + iη)] and the half-width at half maximum
(HWHM) is −Im[Zµ(q, ωµ(q) + iη)] for positive frequencies
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The spectral function in the perturbative limit
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The anharmonic self-energy in the perturbative limit

At the perturbative lowest order there
are 3 diagrams that contribute to the
phonon self-energy: tadpole (T), loop
(L), and bubble (B)

The self-energy diagrams need to be
constructed with Feyman diagram
rules and have to be calculated with
Matsubara summation techniques (see
Mahan book)

These are the self-energy terms

(T )

Π µ(q) =
2− ωµ(q)

N

∑
νν′q′

(3)

φ ννν′(−q′, q, 0)
(3)

φ ν′µµ(0, q,−q)
2nB(ων(q′)) + 1

ων′(0)

(L)

Πµ(q) =
ωµ(q)

N

∑
νq′

(4)

φµµνν(q,−q, q′,−q′)(2nB(ων(q′)) + 1)

(B)

Π µ(q, ω + iη) =
−ωµ(q)

N

∑
νν′q′

|
(3)

φµνν′(q, q
′,−q − q′)|2F (ω + iη, ων(q′), ων′(−q − q′))
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The anharmonic self-energy in the perturbative limit

In the equation above

(n)

φ µ1···µn
(q1, · · · , qn) =

∑
a1···an

(n)

φa1···an (q, · · · , qn)√
Ma1 · · ·Man

ea1
µ1

(−q1) · · · eanµn
(−qn)√

2nωµ1 (q1) · · ·ωµn (qn)

F (ω + iη, ω1, ω2) =
2(ω1 + ω2)(1 + nB(ω1) + nB(ω2))

(ω1 + ω2)2 − (ω + iη)2

+
2(ω1 − ω2)(nB(ω2)− nB(ω1))

(ω1 − ω2)2 − (ω + iη)2

Maradudin and Fein, Phys. Rev. 128, 2589 (1962)

Rousseau and Bergara, PRB 82, 104504 (2010)
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The electron-phonon self-energy in the perturbative limit

At lowest order in the electron-phonon interaction the self-energy is given by the
Migdal diagram

In the diagram we have internal electron lines

The self-energy is given by

(e−ph)

Π µ(q, ω + iη) =
2ωµ(q)

N

∑
nmk

|gµmk+q,nk|
2 fnk − fmk+q

Enk − Emk+q + ω + iη

Allen and Mitrovic, “Theory of Superconducting Tc”

Grimvall, “The Electron-phonon Interaction in Metals”
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Features of perturbation theory

Phonons acquire a finite lifetime due to the interaction with electrons and other
phonons (anharmonicity)

Experimental cross sections and optical measurements in the infrared can be
explained thanks to the interactions

The lattice thermal conductivity becomes finite

Phonon linewidths and frequencies are temperature dependent due to anharmonic
effects, not the electron-phonon interaction

The tadpole anharmonic diagram gives thermal expansion and the temperature
dependence of the internal degrees of freedom in the Wyckoff positions
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The quasiharmonic approximation

The quasiharmonic approximation can give an easy, but aproximate, way to at
least estimate thermal expansion in the crystal and part of the temperature
dependence of phonon frequencies

Let’s assume the free parameters in a crystal are the lattice degrees of freedom
A = {a, b, c, α, β, γ} and some free parameters in the Wyckoff positions
W = {w1,w2, · · · }
In the quasiharmonic approximation the harmonic free energy is calculated as a
function of these free parameters

F (T ,A,W ) =
∑
µ

[
1

2
~ωµ(A,W )− 1

β
ln(1 + nB(ωµ(A,W )))

]

By minimizing the free energy at a given temperature T in the parameter space
defined by A and W , the evolution with temperature of the free parameters in the
structure can be approximated

This is only practically useful if the free parameters are just a few due to symmetry
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The quasiharmonic approximation

FCC Al: Only a the free degree of freedom in the structure

Togo et al., Scripta Materialia 108, 1 (2015)
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Exercises

1 Show that in the harmonic approximation

σ(q, ω) = ω
∑
ab

∑
µ

1

2ωµ(q)
eaµ(−q)ebµ(q) [δ(ω − ωµ(q))− δ(ω + ωµ(q))]

2 assuming that in the spectral function σ(q, ω) only diagonal terms contribute
(a = b), calculate the integral ∫ ∞

−∞
dωσ(q, ω)
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