定态微扰论

1. 定态微扰论

1.1 简介

量子力学中研究保守物理体系(即)哈密顿算符不明显地依赖于时间的体系)是以哈密顿算符的本征值方程为基础的。

两个重要例子:

简谐振子 特点:√ 哈密顿算符非常简单

氢原子 特点:√ 本征方程可精确求解

然而,仅有少数体系可精确求解。

一般情况下,方程过于复杂,无法求得解析解。

例如:无法精确求解多电子原子体系,哪怕是仅多了一个电子的氦原子。

近似方法:解析地求得基本的本征值方程的近似解

定态微扰论:应用极其广泛,很符合物理学家的口味

①首先突出主要的效应,也就是决定该现象或该体系全貌的那些效应

②理解了这些问题之后,再考虑在一级近似中忽略了的次要效应,并尝试着去解释更“精细”的细节

③正是在处理这些次要效应时,需要应用微扰理论。

1.2 Nondegenerate perturbation theory

非简并微扰:

微扰论适用的前提条件

①体系的哈密顿量H 可写成如下形式:
$$H = {H_0} + W$$

其中H0 的本征态和本征值已知,W远小于H0算符怎么比大小?

②实际上指的是W的矩阵元要远小于H0

H0与时间无关,称为非微扰哈密顿量(unperturbed Hamiltonian),而W称为微扰;

④如果W也与时间无关,则称为定态微扰;

⑤求解微扰造成的能级和波函数变化。

基本假设与方法

假设W正比于一个实数λ,其无量纲且远小于1。
$$W = \lambda \hat W$$
$$\lambda \ 1$$

算符 W ̂ 的矩阵元与H0可比(comparable)

一句话弄懂微扰理论:

H的本征值和本征态按λ幂次展开,保留有限项。

具体步骤

①假设未微扰哈密顿量H0 的本征态与本征值已知;

②假设上述本征值构成分立谱(discrete spectrum),并可以用一个整数序号p代表:Ep0

③对应的本征态可表示为 |$\varphi _p^i$〉,多余的序号i用于简并态Ep0,区分本征子空间中的正交归一基矢。
$${H_0}|\varphi _p^i\rangle = E_p^0|\varphi _p^i\rangle $$
$$\langle \varphi p^i|\varphi {p’}^{i’}\rangle = {\delta {pp’}}{\delta {ii’}},\sum\limits_p {\sum\limits_i {|\varphi _p^{\mathop i\limits^. }\rangle \langle \varphi _p^{\mathop i\limits^. }| = I} } $$

微扰强度λ

$$H(\lambda ) = {H_0} + \lambda \hat W$$

① 体系的哈密顿量可看作λ 的函数,而λ 则表征微扰的强度大小;

λ 等于0,H(λ) 等于未微扰的哈密顿量H0

H(λ) 的本征值E(λ) 一般情况下与λ有关;

④ 每条曲线都对应着H(λ)的一个本征矢;

⑤ 每一个λ对应的若干本征矢构成矢量空间的一组基矢;

H(λ) 可以存在简并;

⑦ 当λ→0时,不同E(λ)可以趋近同一个未微扰本征值 Ep0

1.3 H(λ) 本征方程的近似解

问题描述:

① 寻找H(λ)的本征态 |ψ(λ)〉和本征值E(λ)

$$H(\lambda )|\psi (\lambda )\rangle = E(\lambda )|\psi (\lambda )\rangle $$

②假设E(λ)和|ψ(λ)>可按λ幂次展开:

$$E(\lambda ) = {\varepsilon _0} + \lambda {\varepsilon _1} + … + {\lambda ^q}{\varepsilon _q} + …$$

$$|\psi (\lambda )\rangle = |0\rangle + \lambda |1\rangle + … + {\lambda ^q}|q\rangle + …$$

注意这个写法,与前面右矢的标记不同。

③ 替换 $({H_0} + \lambda \hat W)\left[ {\sum\limits_{q = 0}^\infty {{\lambda ^q}} |q\rangle } \right] = [\sum\limits_{q’ = 0}^\infty {{\lambda ^{q’}}} {\varepsilon {q’}}]\left[ {\sum\limits{q = 0}^\infty {{\lambda ^q}} |q\rangle } \right]$

λ取任意值(小),等式两侧都应成立;

⑤ 为此要求两侧相同λ幂次的系数相等

$$({H_0} + \lambda \hat W)\left[ {\sum\limits_{q = 0}^\infty {{\lambda ^q}} |q\rangle } \right] = [\sum\limits_{q’ = 0}^\infty {{\lambda ^{q’}}} {\varepsilon {q’}}]\left[ {\sum\limits{q = 0}^\infty {{\lambda ^q}} |q\rangle } \right]$$

· For 0th-order terms in λ

$${H_0}|0\rangle = {\varepsilon _0}|0\rangle $$

· For 1st-order terms in λ

$$({H_0} – {\varepsilon _0})|1\rangle + (\hat W – {\varepsilon _1})|0\rangle = 0$$

· For 2nd-order terms in λ

$$({H_0} – {\varepsilon _0})|2\rangle + (\hat W – {\varepsilon _1})|1\rangle – {\varepsilon _2}|0\rangle = 0$$

· For qth-order terms in λ

$$({H_0} – {\varepsilon _0})|q\rangle + (\hat W – {\varepsilon _1})|q – 1\rangle – {\varepsilon _2}|q – 2\rangle \; – {\varepsilon _q}|0\rangle = 0$$

只关注前三个等式,即忽略λ2以上的项

前面学过,本征方程

$$H(\lambda )|\psi (\lambda )\rangle = E(\lambda )|\psi (\lambda )\rangle $$

所确定的 |ψ(λ)> 可与任意系数相乘。

因此,可按以下规则选取|ψ(λ)> 的模和相角(相位因子)

· |ψ(λ)>归一化;

· 调整相角,使得内积<0|ψ(λ)> 为实数。

对于0级小,这意味着用 |0> 表示的矢量是归一化的

$$\langle 0|0\rangle = 1$$

此时相角任意选择

对于1级小,矢量|ψ(λ)>模的平方可写为:

$$\langle \psi (\lambda )|\psi (\lambda )\rangle = [\langle 0| + \lambda \;\langle \;1|][|0\rangle + \lambda |1\rangle ] + O({\lambda ^2})$$

$$ = \;\langle \;0|0\rangle + \lambda [\langle 1|0\rangle + \langle 0|1\rangle ] + O({\lambda ^2})$$

要令上式等于1,则 λ的一次项应等于0

选择相角,使<0|1>为实数(λ为实数),则可以得到

$$\langle 0|1\rangle = \langle 1|0\rangle = 0$$

注意这是一个人为选择的结果

类似地,讨论λ的二级小,可以得到

$$\langle 0|2\rangle = \langle 2|0\rangle = – \frac{1}{2}\langle 1|1\rangle $$

推广到q级小,则有

$$\eqalign{
& \langle 0|q\rangle = \langle q|0\rangle = – \frac{1}{2}[\langle q – {\text{1}}|1\rangle + \langle q – 2|2\rangle + … \cr
& {\text{ }} + \langle 2|q – 2\rangle + \langle 1|q – 1\rangle ] \cr} $$

1.4 The perturbation subspace

微扰子空间

$${H_0}|0\rangle = {\varepsilon _0}|0\rangle $$

上式说明,|0>是 H0 具有本征值 ε0的本征矢;

ε0属于H0 的能量谱,因为H(λ)的每一个本征值,当λ→0时都会趋近于其中一个未微扰的能级;

不妨令ε0 = E0,则当λ→0时,会有一个或多个不同的E(λ) 趋近于En0;

考虑这些属于上述E(λ)的本征态;

这些本征矢张开一个子空间,当λ在0附近变化时,其维度不能突变

最终,子空间的维度等于En0的简并度 gn

特别地,如果En0是非简并,则仅能对应一个本征值E(λ), 且该能级是非简并的

一直到这里,并未区分能级简并与否

1.5 Perturbation of a non-degenerate level

非简并能级的微扰: 注意:微扰的对象是能级,而非体系

· 考虑未微扰哈密顿量H0的非简并能级En0,其本征态为|φn> 注意这个符号,小写的。

· 目标:微扰W作用后能级和定态波函数的变化;

· 对于H(λ)当λ→0时趋近于En0 的本征值,存在关系:

$${\varepsilon _0} = E_n^0$$

· 这表明|0> 正比于|φn>。

· p|0>和|φn>都是归一化的,因此选择

$$|0\rangle = |{\varphi _n}\rangle $$

这样,当 λ→0时,就又得到了具有相同相角的未微扰态 |φn>

H(λ)的本征值En(λ) ,当 λ→0时趋近于H0的本征值En0

假设λ 足够小,这样本征值仍然是非简并的,即只对应于一个特定的 |ψn(λ)>。

1.6 First-order corrections一级修正

p先确定ε1 和|1>

Energy correction能量修正

$$({H_0} – {\varepsilon _0})|1\rangle + (\hat W – {\varepsilon _1})|0\rangle = 0$$

将上式投影至|φn>, 可得

$$\langle {\varphi _n}|({H_0} – {\varepsilon _0})|1\rangle + \langle {\varphi _n}|(\hat W – {\varepsilon _1})|0\rangle = 0$$

第一项等于0,因为|φn>=|0> 是H0的本征态,其本征值为 En0=ε0

$${\varepsilon _1} = \langle {\varphi _n}|\hat W|0\rangle = \langle {\varphi _n}|\hat W|{\varphi _n}\rangle $$

$${\varepsilon _1} = \langle {\varphi _n}|\hat W|0\rangle = \langle {\varphi _n}|\hat W|{\varphi _n}\rangle $$

在非简并态的情况下,对应于En0H 的本征值En(λ) 在微扰的一级修正下可写为

$${E_n}(\lambda ) = E_n^0 + \langle {\varphi _n}|W|{\varphi _n}\rangle + O({\lambda ^2})$$

$W = \lambda \hat W$ 注意两个W的区别

因此,能量的一级修正,等于微扰项在未微扰态|φn>中的平均值

刘泉林 博士/Doc,教授/Prof

基本信息

姓      名:刘泉林

所在系所:材料物理与化学系

职      务:系主任

职      称:教授

办公地点:金物楼410

E-mail:qlliu@ustb.edu.cn

拓展信息

教育经历:

(1)1995.9–1998.6,   中科院物理研究所,凝聚态物理, 博士, 导师:梁敬魁

(2)1992.9-1995.6, 中国地质大学(北京), 矿物学, 硕士, 导师:马喆生

(3)1988.9-1992.6, 西南科技大学, 地质勘查, 学士, 导师:李虎杰

工作经历:

(1)2005.9至今, 北京科技大学, 材料科学与工程, 教授

(2)2000.8-2005.8, 中科院物理研究所, 先进材料与结构分析实验室, 副研究员

(3)1998.7-2000.7, 中科院物理研究所, 先进材料与结构分析实验室, 助理研究

(4)2003.10-2004.4,日本国家材料研究所, 博士后, 合作导师:Bando Y

(5)2001.1-2003.1, 日本国家材料研究所, 博士后, 合作导师:Tanaka T

主讲课程:

《统计物理》(本科生),《材料科学与工程导论-名师课堂》(本科生),《晶体衍射与结构分析》(研究生),《功能材料物理》(研究生)

研究领域:

目前研究方向为光电功能材料与器件,侧重半导体照明用发光材料及封装技术;防伪探测用的近红外发光材料与器件;

节能环保用的蓄光材料,新型光电器件;特殊金属构件的寿命预测与控制。主要以化学构造—物理机制—材料应用为研

究层次,采用先进方法和技术,研究材料的组分-结构-功能的关系,目的是改进材料,以及研发新材料和新器件。负

责主持国家自然科学基金,国家高技术研究发展计划项目(863),教育部科学技术研究重大项目,及企业合作等项

目。 2004年获北京市科学技术(基)壹等奖(排序4),2006年获教育部“新世纪优秀人才支持计划”。目前在SCI收录的

学术刊物上发表论文200余篇,论文被引用8000余次,获得授权发明专利10项。

宋振/Song Zhen 博士/Phd,副教授/Associate Professor

基本信息

姓      名:宋振

所在系所:材料物理与化学系

职      务:干部

职      称:副教授

办公地点:金物楼420

E-mail:zsong@ustb.edu.cn

拓展信息

教育经历(写到本科阶段):

(1)2009.9-2014.6,   北京科技大学,材料科学与工程, 博士, 导师:刘泉林

(2)2005.9-2009.6, 北京科技大学, 材料科学与工程, 学士

工作经历:

(1)2020.7至今,   北京科技大学,材料科学与工程, 副教授

(2)2014.7-2020.7, 北京科技大学, 材料科学与工程, 讲师

(3)2014.7-2016.12, 北京科技大学, 博士后, 导师:刘泉林

主讲课程:

《量子力学》

研究领域:

目前研究方向为荧光粉可控制备;固体发光机理;稀土发光材料。

Lead-Free Double Perovskite Cs2AgInCl6

Angew. Chem. Int. Ed., 2021, 60(21): 11592-11603, https://doi.org/10.1002/anie.202011833

Lead-free halide perovskites have drawn wide attention as alternatives to their toxic and poorly stable lead-based counterparts. Among them, double perovskites with Cs2AgInCl6 composition, often doped with various elements, have been in the spotlight owing to their intriguing optical properties, namely, self-trapped exciton (STEs) emission and dopant-induced photoluminescence. This interest has sparked different synthesis approaches towards both crystals and nanocrystals, and the exploration of many alloy compositions with mono- and trivalent cations other than Ag+ and In3+. In this Minireview we describe the recent developments on Cs2AgInCl6 bulk crystals and nanocrystals, their synthesis strategies, intrinsic optical properties, and tunable photoluminescence originating from different alloying and doping effects. We also discuss progress on computational studies aimed at understanding the thermodynamic stability, the role of defects, and the origin of photoluminescence in relation to the STEs and the direct band gap character.

Two Hybrid Metal Halide Infrared Nonlinear Optical Crystals with High Stability:(TMEDA)MI5 (M = Sb, Bi).

Adv. Opt. Mater., 2021, 9, 14, 2101333, https://doi.org/10.1002/adom.202101333

Organic–inorganic metal halides (OIMHs) with unique structural flexibility possess excellent photoelectric properties. They are regarded as next-generation photovoltaic materials, phosphors, semiconductors, and ferroelectrics. The metal-halide units in OIMHs are good microscopic building blocks of nonlinear optical crystals for laser wavelength conversion. However, most OIMHs are absent from nonlinear optics owing to their macroscopic nonlinear optical (NLO)-inactive centrosymmetric crystal structure. In this study, two new lead-free OIMHs, (TMEDA)SbI5 and (TMEDA)BiI5 (where TMEDA2+ is N,N,N′-trimethylethylenediammonium), having 1D structure, crystallized in the orthorhombic system with a non-centrosymmetric P212121 space group, are synthesized. Remarkably, upon 2090 nm laser irradiation, both compounds possess a strong infrared (IR) nonlinear optical response of the same magnitude as AgGaS2, which is a benchmark semiconductor-type nonlinear optical crystal. In addition, under the excitation of ultraviolet and visible lights, both compounds produce self-trapped exciton-induced red-light emission. First-principles electronic structure calculations reveal that the optical properties originate from the electronic transitions within the inorganic metal-halide group. The obtained results indicate that both compounds are potential photoelectric materials for laser frequency conversion and fluorescence, and the observation of NLO effect in these two compounds verifies that OIMHs are also good candidates for NLO crystals.

Broad Photoluminescence and Second-Harmonic Generation in the Non-Centrosymmetric Organic–Inorganic Hybrid Halide (C6H5(CH2)4NH3)4MX7·H2O (M = Bi, In, X = Br or I).

Chem. Mater., 2021, 33, 20, 8106–8111, https://doi.org/10.1021/acs.chemmater.1c02896

Recent discoveries in organic−inorganic metal halides reveal superior semiconducting and polarization properties. Herein, we report three organic–inorganic metal halides, (PBA)4BiBr7·H2O, (PBA)4BiI7·H2O, and (PBA)4InBr7·H2O [(PBA)+ = C6H5(CH2)4NH3+], with band gaps of ∼3.52, ∼2.29, and ∼4.05 eV, respectively. They possess zero-dimensional structures containing the inorganic octahedra [MX6]3– (M = Bi, In, X = Br, I) and unbound X ions and crystallize in the C2 space group. (PBA)4BiI7·H2O shows a second-harmonic-generation (SHG) response in the infrared region, approximately 1.3 times that of AgGaS2; (PBA)4BiBr7·H2O and (PBA)4InBr7·H2O show SHG responses in the ultraviolet region, approximately 0.4 and 0.6 times that of KH2PO4, respectively. The large SHG responses are attributed to the synergistic contribution of the octahedral distortion of [MX6]3– (M = Bi, In, X = Br, I) and the ordered arrangement of the benzene ring-containing organic cation PBA+. Upon ultraviolet and visible-light excitations at room temperature, (PBA)4BiBr7·H2O, (PBA)4BiI7·H2O, and (PBA)4InBr7·H2O exhibit broad red-light luminescence with large Stokes shifts of 290, 237, and 360 nm, respectively, due to self-trapped exciton emission. All of these properties demonstrate that this series of metal halides are potential multifunctional optoelectronic materials.

Reversible Mechanically Induced On-Off Photoluminescence in Hybrid Metal Halides

Adv. Funct. Mater., 2021: 2110771. https://doi.org/10.1002/adfm.202110771

Stimulus-responsive photoluminescent materials have attracted extensive research attention in recent years owing to their potential application in information storage and switch devices. It is important to further explore such bistable materials as well as the underlying transformation mechanisms. Herein, the syntheses and mechanically tunable “on–off” photoluminescence (PL) of two organic–inorganic hybrid metal halides, (Bmpip)9Pb3Zn2Br19 and (Bmpip)9Pb3Cd2Br19 (Bmpip+ = 1-butyl-1-methyl-piperidinium, C10H22N+), are reported. Both as-obtained compounds are nonemissive under UV light at ambient conditions but exhibit bright PL upon grinding or under hydrostatic pressure. Interestingly, the PL is quenchable by short-time annealing or storage in air for 1 week, and the process is repeatable. Through a combination of extensive structural and spectral analyses, the crucial role of the organic cations interacting with inorganic chromophores in the “on–off” PL behavior of the title compounds is revealed. Moreover, pressure-induced PL and PL-enhancement phenomena are observed in both compounds, which are similar to but slightly different than the above-mentioned mechano-PL. Finally, proof-of-concept devices are fabricated to demonstrate the potential applications of the title compounds in message recording and force sensing.

Light-Emitting 0D Hybrid Metal Halide (C3H12N2)2Sb2Cl10 with Antimony Dimers.

Inorg. Chem., 2021, 60, 15, 11429–11434. https://doi.org/10.1021/acs.inorgchem.1c01440

Low-dimensional organic–inorganic metal halides (OIMHs), as emerging light-emitting materials, have aroused widespread attention owing to their unique structural tunability and photoelectric characteristics. OIMHs are also promising materials for optoelectronic equipment, light-emitting diodes, and photodetectors. In this study, (C3H12N2)2Sb2Cl10 (C3H12N22+ is an N-methylethylenediamine cation), a new zero-dimensional OIMH, has been reported, and (C3H12N2)2Sb2Cl10 possesses a P21/n space group. The (C3H12N2)2Sb2Cl10 structure contains [Sb2Cl10]4– dimers (composed of two edge-sharing [SbCl6]3– octahedra) that are surrounded by C3H12N22+ cations. The experimental band gap of (C3H12N2)2Sb2Cl10 is 3.80 eV, and density functional theory calculation demonstrates that (C3H12N2)2Sb2Cl10 possesses a direct band gap, with the edge of the band gap mainly contributed from the inorganic units. (C3H12N2)2Sb2Cl10 exhibits good ambient and thermal stability. Under 395 nm excitation at room temperature, (C3H12N2)2Sb2Cl10 exhibits a broad emission with a full width at half-maximum of ∼114 nm, peaking at 480 nm, and the broad emission was ascribed to self-trapped exciton emission.

In4Pb5.5Sb5S19: A Stable Quaternary Chalcogenide with Low Thermal Conductivity.

Inorg. Chem., 2021, 60, 1, 325-333. https://doi.org/10.1021/acs.inorgchem.0c02966

Transition-metal-based chalcogenides are a series of intriguing semiconductors with applications spanning various fields because of their rich structure and numerous functionalities. This paper reports the crystal structure and basic physical properties of a new quaternary chalcogenide In4Pb5.5Sb5S19. The crystal structure of In4Pb5.5Sb5S19 was determined by both powder and single-crystal X-ray diffraction techniques. In4Pb5.5Sb5S19 crystallizes in the monoclinic system with I2/m space group, and the structure parameters are a = 26.483 Å, b = 3.899 Å, c = 32.696 Å, and β = 111.86°. The polyhedral double chains of Sb3+ and Sb/Pb2+ as the main cations are parallel to each other and form a Jamesonite-like mineral structure through the short chain links of the distorted In, Pb, and Sb polyhedron. In4Pb5.5Sb5S19 exhibits a moderate experimental band gap of 1.42 eV, indicating its potential for application in solar cells and photocatalysis. In addition, In4Pb5.5Sb5S19 exhibits good ambient stability, and differential scanning calorimetry tests demonstrate that it is stable up to 892 K in a nitrogen atmosphere. Moreover, In4Pb5.5Sb5S19 exhibits extremely low thermal conductivity (0.438–0.478 W m–1 K–1 ranging from 300 to 700 K) compared with binary counterparts such as PbS and In2S3. Future chemical manipulation via elemental doping or defect engineering may make the title compound a potential thermoelectric or thermal insulating material.

Pavonite homologues as potential n-type thermoelectric materials: crystal structure and performance.

Mater. Chem. Front., 2021, 5(3): 1283-1294. https://doi.org/10.1039/D0QM00662A

Themoelectric materials exhibit great potential in alleviating the energy shortage and environmental pollution. The development of homologous series is helpful for understanding the relationship between structure and properties, thereby providing new strategies for seeking high-performance thermoelectric materials. Among the various structure prototypes, pavonite is a rising star and has received increasing attention as a potential n-type thermoelectric material owing to their diverse structures and extremely low thermal conductivity. In this review, we summarized the structural characteristics of pavonite and introduced the relationship between structure and thermoelectric performance. The pavonite structure consists of two alternating slabs with separately tunable thicknesses, and has wide adaptability for elemental substitution. Specifically, the participation of heavy atoms in the pavonite structure results in large unit cell volume and Grüneisen parameters, and thus extremely low lattice thermal conductivity. Finally, we briefly discussed the potential of pavonite compounds in thermoelectric applications.