赵静 博士/Doc,副教授/A.P.

图片4

基本信息:

姓名:赵静

所在系所:材料物理与化学系

职称:副教授

办公地点:金物楼416

邮箱:jingzhao@ustb.edu.cn

教育背景:

2004.9-2008.7 山西师范大学,材料化学专业,学士学位

2008.9-2013.7 中国科学院理化技术研究所,无机化学专业,博士学位

2012.10-2013.2 加拿大曼尼托巴大学,Georg Schreckenbach课题组,博士研究生联合培养

2015.8-2017.8 美国西北大学 Mercouri G. Kanatzidis课题组,博士后

工作经历:

2017年至今 北京科技大学, 材料科学与工程学院, 副教授,项目博导

拓展信息:

研究领域为半导体新材料的结构设计、合成以及材料性能表征等。涉及的研究方向包括:结构化学、无机材料合成、有机-无机杂化材料合成,材料荧光性能、非线性光学性能及热电转换性能表征及研究。申请人共发表高水平SCI论文40余篇。其中以第一作者和通讯作者在J. Am. Chem. Soc.(2);Chem. Mater.(4); Adv. Funct. Mater;Adv. Opt. Mater;ACS Appl. Mater. Interfaces;Inorg. Chem.Inorg. Chem. Front;J. Phys. Chem. Lett.; J. Mater. Chem. C.等期刊发表多篇文章。主持国家自然科学基金面上项目、国家自然科学基金青年项目和北京市自然科学基金面上项目等以及主持了一项与南方电网合作的企业间项目;参与多项国家自然科学基金重大项目。

张洪溥

研究方向

研究生主要从事LED用可见光荧光粉的结构与性能研究

教育背景

2018.09-2022.06 北京科技大学 材料科学与工程专业 学士
2022.09-至今 北京科技大学 材料科学与工程专业 硕士

崔毅博

研究领域

研究生期间主要在发光材料的结构及其性能方向进行研究。

教育背景

2018.09-2022.06 济南大学 材料物理专业 学士

2022.09-至今 北京科技大学 材料工程专业 硕士

Reversible Mechanically Induced On–Off Photoluminescence in Hybrid Metal Halides

Adv. Funct. Mater., 2022, 32, 13, 2110771. https://doi.org/10.1002/adfm.202110771

Stimulus-responsive photoluminescent materials have attracted extensive research attention in recent years owing to their potential application in information storage and switch devices. It is important to further explore such bistable materials as well as the underlying transformation mechanisms. Herein, the syntheses and mechanically tunable “on–off” photoluminescence (PL) of two organic–inorganic hybrid metal halides, (Bmpip)9Pb3Zn2Br19 and (Bmpip)9Pb3Cd2Br19 (Bmpip+ = 1-butyl-1-methyl-piperidinium, C10H22N+), are reported. Both as-obtained compounds are nonemissive under UV light at ambient conditions but exhibit bright PL upon grinding or under hydrostatic pressure. Interestingly, the PL is quenchable by short-time annealing or storage in air for 1 week, and the process is repeatable. Through a combination of extensive structural and spectral analyses, the crucial role of the organic cations interacting with inorganic chromophores in the “on–off” PL behavior of the title compounds is revealed. Moreover, pressure-induced PL and PL-enhancement phenomena are observed in both compounds, which are similar to but slightly different than the above-mentioned mechano-PL. Finally, proof-of-concept devices are fabricated to demonstrate the potential applications of the title compounds in message recording and force sensing.

Small Organic Molecular-Based Hybrid Halides with High Photoluminescence Quenching Temperature

Inorg. Chem. 2022, 61, 19, 7560–7567. https://doi.org/10.1021/acs.inorgchem.2c00711

Organic–inorganic metal halides (OIMHs) exhibit excellent photoelectric properties; however, their high-temperature light-emission stability requires further improvement. Here, we report three isostructural OIMHs (C2H8N)4InCl7, (C2H8N)4SbCl7, and (C2H8N)4SbBr7 (C2H8N+ = dimethylammonium). They are all crystallized in the P21212 space group with a zero-dimensional (0D) structure, with orange-red photoluminescence (PL) under 365 nm UV excitation. Among them, (C2H8N)4InCl7 exhibits the strongest PL with a photoluminescence quantum yield (PLQY) of 13.9% at room temperature. Optical property measurements and density functional theory unveil that the luminescence of (C2H8N)4InCl7 at 405 and 620 nm is due to free exciton and self-trapped exciton emission, respectively. It is worth noting that (C2H8N)4InCl7 shows a high PL quenching temperature, maintaining 50% of its room-temperature PL intensity at 425 K, which is rare in OIHMs. This is much higher than the application temperature of phosphors in practical solid-state lighting applications (363–383 K). In this temperature range, the luminous intensity of (C2H8N)4InCl7 exceeds 60% of that at room temperature. The high PL quenching temperature observed in (C2H8N)4InCl7 indicates the potential of OIMHs for applications in phosphor-converted light-emitting diodes.

Crystallographic control for Cr4+ activators toward efficient NIR-II luminescence

Inorg. Chem. Front., 2022,9, 1912-1919 https://doi.org/10.1039/D2QI00217E

Broadband near-infrared (NIR) emitting phosphors have attracted great interest due to their potential applications in non-destructive examination and bioimaging. However, most of the reported broadband NIR phosphors emit in the NIR-I region with a wavelength shorter than 950 nm, while rare-earth activated NIR-II phosphors can hardly meet the requirements because of their sharp emission. Herein, we successfully synthesized the broadband NIR-II phosphor Li2ZnGeO4:Cr4+. By employing the all-tetrahedron-built matrix, all the Cr ions are stabilized in the tetravalent state due to crystallographic control. This phosphor shows wide absorption from the red to near-infrared region. Under 646 nm excitation, it exhibits broadband NIR-II emission peaking at 1218 nm with an FWHM of 220 nm at room temperature. We also demonstrated the potential applications of Li2ZnGeO4:Cr4+ as an NIR-II light source in non-destructive examination and bioimaging. This work provides a new strategy for exploring broad-band NIR-II luminescent materials.

UV-Red Light-Chargeable Near-Infrared-Persistent Phosphors and Their Applications

ACS Appl. Mater. Interfaces 2022, 14, 1, 1496–1504 https://pubs.acs.org/doi/10.1021/acsami.1c21321

Near-infrared (NIR)-persistent luminescence (PersL) materials are of promising applications in labeling, tracing, bio-imaging, and so forth, featuring distinctive self-sustained NIR light emitting. The PersL radiation spectrum, PersL duration, and charging efficiency are recognized as the key enablers for high-performance NIR PersL materials. Here, we have designed and developed a series of broad-band NIR superlong PersL phosphors (Sr,Ba) (Ga,In)12O19:Cr3+ with efficient UV-red light charging capacity. Typical SrGa10.49In1.5O19:0.01Cr3+ presents intensive NIR PersL from 650 to 1000 nm peaking at ∼770 nm, with a PersL duration of 360 h. This material can be efficiently and repeatedly charged by solar radiation in various outdoor environments. Our work further identifies that this NIR PersL material is advantageous for labeling and tracing as a secret NIR additive and in situ bio-imaging as an optical probe under high tissue penetration red light excitation.

An emerging NIR super-long persistent phosphor and its applications

Mater. Today Chem. 2022,24 https://doi.org/10.1016/j.mtchem.2022.100806

Materials with the ability to persistently emit intense near-infrared (NIR) light after ceasing excitation are very useful in many fields. The persistent time is a vital parameter for successful applications. In this study, we developed an emerging NIR super-long persistent luminescent (PersL) material, Cr3+-activated magnetoplumbite oxide La(Zn/Mg)(Ga,Al)11O19:Cr3+, by doping Yb3+ as a new efficient electron trap and incorporating Al3+ to engineer the energy band. We show that fine control of the trap depth and density is the key underpinning for PersL enhancement. The title material emits intense PersL in the spectral range of 600–950 nm with a PersL time of more than 1,000 h. Furthermore, after undergoing such long-term decay, the NIR emission can be revived by photo-/thermo-stimulation. We demonstrate its potential uses in bioimaging, multilevel anti-counterfeiting, tracing, and positioning. This study provides insight into how energy band engineering manipulates electronic structures to achieve high-performance PersL. The new NIR persistent phosphor may be soon utilized in related applications.

Novel Cr3+-activated far-red emitting phosphors with β-Ca3(PO4)2-type structure for indoor plant cultivation

Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1286-1294. http://ijmmm.ustb.edu.cn/article/doi/10.1007/s12613-021-2363-6

Cr3+-activated far-red and near-infrared phosphors have drawn considerable attention owing to their adjustable emission wavelengths and wide applications. Herein, we reported a series of Cr3+-doped phosphors with β-Ca3(PO4)2-type structure, of which Ca9Ga(PO4)7:Cr3+ possessed the highest far-red emission intensity. At an excitation of 440 nm, the Ca9Ga(PO4)7:Cr3+ phosphors exhibited a broad emission band ranging from 650 to 850 nm and peaking at 735 nm, and the broadband superimposed two sharp lines centering at 690 and 698 nm. The optimal sample Ca9Ga0.97(PO4)7:0.03Cr3+ had an internal quantum efficiency of 55.7%. The luminescence intensity of the Ca9Ga0.97(PO4)7:0.03Cr3+ phosphor obtained at 423 K could maintain 68.5% of that at room temperature, demonstrating its outstanding luminescence thermal stability. A phosphor-conversion light-emitting diode was fabricated, indicating that the Ca9Ga(PO4)7:Cr3+ phosphor has potential applications in indoor plant cultivation.

Efficient broadband near-infrared phosphor Sr2ScSbO6:Cr3+ for solar-like lighting

Sci. China Mater. 65, 748–756 (2022).https://doi.org/10.1007/s40843-021-1785-6

For healthy lighting, daily lighting that considers both visible light and near-infrared (NIR) light is necessary. However, at ∼900 nm, the extensively used solar-like phosphor-converted light-emitting diodes (pc-LEDs) are limited by a lack of high-performance NIR luminescent materials. We report a broadband NIR phosphor Sr2ScSbO6:Cr3+ with a double perovskite-type structure, thus simultaneously demonstrating high luminescence efficiency and good thermal stability. Under 550-nm excitation, Sr2ScSbO6:Cr3+ demonstrates broadband NIR emission centered at ∼890nm with luminescence internal/external efficiencies of 82.0%/35.7%, respectively. Furthermore, the luminescence integrated intensity at 430 K remains at ∼66.4% of the initial intensity. We successfully fabricated pc-LED devices using a 465-nm-sized blue chip and other commercial phosphors, presenting a relatively complete solar-like spectrum from blue to NIR light and is expected to be used in solar-like lighting.