Enhancing External Quantum Efficiency of Blue-Emitting Phosphor Ba(K)-β-Al2O3:Eu2+ by Lattice Site Engineering for Full-Spectrum Lighting

Inorg. Chem. 2023, 06, 13, 10021–10028, https://doi.org/10.1021/acs.inorgchem.3c01405

The discovery of violet-excitable blue-emitting phosphor is a significant breakthrough for the development of phosphor-converted full-spectrum white light-emitting diodes (WLEDs). However, the application of most known violet-excitable blue-emitting phosphors is limited by their low external quantum efficiency (EQE). In this work, we reported on how the EQE values of Eu2+-doped Ba(K)-β-Al2O3 blue-emitting phosphor can be significantly improved through lattice site engineering. By partially substituting K+ for Ba2+, the Eu2+-occupied crystallographic site changes and the coordination polyhedron of Eu2+ shrinks, leading to the increase of crystal field splitting. Consequently, the excitation spectrum exhibits a continuous red shift to match the violet excitation, which enhances the PL intensity of solid solution phosphor (Ba0.4K1.6)0.84Al22O35−α:0.32Eu2+ ((B0.4K1.6)0.84AO:Eu) by 1.42 times compared to that of the end-member Ba1.68Al22O35−α:0.32Eu2+ (B1.68AO:Eu) phosphor. Correspondingly, under the 400 nm violet light excitation, the EQE of optimal blue-emitting (B0.4K1.6)0.84AO:Eu phosphor is up to 53%. Additionally, the phosphor also shows excellent resistance to luminescence thermal quenching (95% at 150 °C). Finally, the WLED fabricated based on (B0.4K1.6)0.84AO:Eu and commercial green and red phosphors exhibited an ultra-high color rending index with Ra = 95.5 and R1–R15 >90. This work offers guidance for tuning the spectral properties of phosphors through lattice site engineering.

Intervalence charge transfer of Cr3+-Cr3+ aggregation for NIR-II luminescence

Light:Science & Applications, 2023, 07, 25, https://www.nature.com/articles/s41377-023-01219-x

The increasing demand for high-contrast biological imaging, non-destructive testing, and infrared night vision can be addressed by the development of high-performance NIR light-emitting materials. Unlike lanthanide (Ln3+) with sharp-line multiplets and isolated Cr3+ with NIR-I emission, this study reports the first-ever NIR-II broadband luminescence based on the intervalence charge transfer (IVCT) of Cr3+-Cr3+ aggregation in gallate magentoplumbite. In particular, LaMgGa11O19:0.7Cr3+ exhibits dual-emission (NIR-I, 890 nm and NIR-II, 1200 nm) with a full width at half maximum (FWHM) of 626 nm under 450 nm blue LED excitation. Moreover, this dual-emission exhibits anti-thermal quenching behavior (432% @ 290 K), attributed to the energy transfer among multiple Cr3+ centers. Cryogen absorption spectra, lifetimes decay (2.3 ms), and electron paramagnetic experiments reveal the NIR-II luminescence of the Cr3+-Cr3+ → Cr2+-Cr4+ IVCT transition. The application of LaMgGa11O19:0.7Cr3+ in NIR-II biological imaging as an optical contrast agent, non-destructive testing, and night vision is demonstrated. This work provides new insights into broadband NIR-II luminescence under UV-NIR excitation based on the IVCT of Cr3+-Cr3+ aggregation.

Highly Quantum Efficient and Thermally Stable Near-Infrared-Emitting K-β-Al2O3:Cr3+ Phosphor

Advanced Optical Materials 2023, 08, 31, https://doi.org/10.1002/adom.202301579

Near-infrared (NIR) phosphors are enablers for NIR phosphor-converted light-emitting diodes (pc-LEDs). However, fewer NIR-emitting phosphors with both high internal/external quantum efficiency (IQE/EQE) and thermal stability are discovered, which obstructs the promotion of NIR pc-LEDs. Herein, by partially replacing Al3+ in K-β-Al2O3:2Cr3+ with Ga3+, the photoluminescence (PL) intensity of the solid solution K1+δ(Al0.4Ga0.6)11O17:2Cr3+, (KA0.4G0.6O:Cr) phosphor is increased 2.75 and 1.25 times that of end-members K1+δAl11O17:2Cr3+ (KAO:Cr) and K1+δGa11O17:2Cr3+ (KGO:Cr). The IQE/EQE of optimal KA0.4G0.6O:Cr reaches 88.9%/50.8% with high thermal stability (77.4%@150 °C). The PL intensity enhancement is due to the Al/Ga-6O octahedral volume and distortion variation caused by the substitution of Ga3+ for Al3+ in K1+δ(Al1-y,Gay)11O17:2Cr3+ (KA1-yGyO:Cr), which leads to the forbidden d–d transition being broken and crystal field strength varied. Finally, a NIR pc-LED device fabricated based on KA0.4G0.6O:Cr NIR-emitting phosphor and blue chip reaches an electro-optical efficiency of 16.3% under a drive current of 100 mA. Meanwhile, non-destructive detection and plant germination applications of the NIR pc-LED are demonstrated. These results prove that KA0.4G0.6O:Cr is a promising NIR phosphor for diverse applications.

Enabling Yb3+ Luminescence with Visible Light Response in Mg2GeO4 via Energy Transfer

Chem. 2023, 08,04, 14402–14410, https://doi.org/10.1021/acs.inorgchem.3c02134

The growing demand for spectroscopy applications in the areas of bioimaging, food quality analysis, and temperature sensing has led to extensive research on infrared light sources. It is crucial for the design of cost-effective and high-performance systems that phosphors possess the ability to absorb blue light from commercial LEDs and convert the excitation energy to long-wavelength infrared luminescence. In this work, we obtained Yb3+ luminescence with visible light response by utilizing the energy transfer from Cr3+ to Yb3+ in Mg2GeO4. After the introduction of Yb3+, intense NIR luminescence peaking at 974 nm can be achieved with an increasing intensity. The local structure analysis was performed to investigate the preferential occupation of Yb3+ ions and the energy transfer process in Mg2GeO4. Considering the properties of thermally coupled anti-Stokes and Stokes emissions of Yb3+ and the sensitive variation of the emission intensity, the potential application of Mg2GeO4:Cr3+, Yb3+ as thermometers was demonstrated.

Second harmonic generation from symmetry breaking stimulated by mixed organic cations in zero-dimensional hybrid metal halides†


Dalton Trans.
, 2023,52, 9368-9376, https://doi.org/10.1039/D3DT01209C

Mixing cations with different chemical properties to induce the generation of asymmetric structures is a new approach for tuning the optical properties of hybrid organic–inorganic metal halides (HOIMHs). In this study, zero-dimensional (C9N3H15)(C9H13SO)MBr6 (M = Bi/Sb, [C9N3H15]2+ = [(C4N2H10)(C5NH5)]2+ and [C9H14SO]+ = [CH3(C6H4)OS(CH3)2]+) are synthesized. Two different cations cause both compounds to crystallize in the polar space group P212121, thus resulting in significant phase matchable second harmonic generation under a 1064 nm laser excitation. Thus, (C9N3H15)(C9H13SO)BiBr6 and (C9N3H15)(C9H13SO)SbBr6 exhibit intensities that are approximately 1.8 and 1.7 times that of KH2PO4, respectively. The results of density functional theory calculations show that both (C9N3H15)(C9H13SO)BiBr6 and (C9N3H15)(C9H13SO)SbBr6 exhibit direct bandgaps of 2.95 and 2.81 eV, respectively. Additionally, because of the distortion of the inorganic octahedra, (C9N3H15)(C9H13SO)SbBr6 exhibited bright yellow emission at room temperature, which is attributed to ns2 fluorescence emission. We believe that the symmetry of the HOIMH crystal structure can be broken by introducing spatially differentiated bifunctional organic cations, which consequently enables even-order nonlinear activities.

Recent progress in Ce3+/Eu2+-activated LEDs and persistent phosphors: focusing on the local structure and the electronic structure

J. Mater. Chem. C, 2023,11, 48-96, https://doi.org/10.1039/D2TC02639B

Ce3+/Eu2+ activated luminescent materials offer a versatile platform for precise emission light manipulation through structure control on the basis of the composition–structure–property correlations. To date, Ce3+/Eu2+ activated phosphors have been well developed as an indispensable component in the lighting industry and display systems due to their superior performance. Meanwhile, many persistent phosphors contain Ce3+/Eu2+ together with other lanthanide or transition-metal co-dopants. It is therefore of great importance to focus on their similarities and gain insight into the interplay effect of the local structure and electronic structure on emission peak modulation and persistent duration elongation. Here, we review the theoretical and experimental progress in the discovery and optimization of Ce3+/Eu2+ activated LEDs and persistent phosphors. The Dorenbos model on f–d transitions and the latest developments in the correlation of the local structure and luminescence characteristics are elaborated to give an overall vision on the composition–structure–property correlations in Ce3+/Eu2+-activated phosphors. Particular attention is devoted to highlighting the critical role of the electronic structure in tuning the properties of phosphors. The development and optimization routines of some typical phosphors are expounded, with an emphasis on phosphor design principles, aiming at providing inspirations for tailoring and optimizing the properties of Ce3+/Eu2+-activated phosphors toward specific applications. Finally, we propose an outlook toward potential theory developments and future material discovery.

Rational design of hybridized local and charge transfer emitters towards high-performance fluorescent blue OLEDs†

J. Mater. Chem. C, 2023,11, 8196-8203, https://doi.org/10.1039/D2TC05554F

Hybridized local and charge-transfer (HLCT) emitters are promising for the realization of high-performance blue organic light-emitting diodes (OLEDs). However, the rational design of efficient HLCT emitters remains challenging. Here, we present two blue emitters (TAP1 and TAP2) with the HLCT state through the construction of D–π–A molecules. Theoretical calculations reveal the large overlap and partial separation of “hole” and “particle” orbitals for S1 excited states, demonstrating the HLCT nature of the emitters. Together with the clear solvatochromic phenomenon, we propose that introducing the π-conjugated anthracene unit into an appropriate donor–acceptor segment is an effective strategy to finely regulate the locally excited and charge transfer components and construct versatile HLCT emitters. Employing TAP2 and TAP1 as emitters, the blue OLEDs exhibit good color purity, high efficiency, and extremely low efficiency roll-offs with Commission internationale de l’éclairage coordinates of, respectively, (0.14, 0.10) and (0.15, 0.11), narrow full width at half maximum values of 45 nm and 52 nm, maximum external quantum efficiency values of 5.53% and 5.16%, and efficiency roll-off values of 0.5% and 1% at the practical brightness of 1000 cd m−2. By virtue of the transient photoluminescence decay curves, excited state energy levels and natural transition orbital analysis, we classify that the reverse intersystem crossing at high-lying excited states from T2 to S1 serves as an efficient approach to harvest triplet excitons and thus boost the exciton utilization efficiency. The superior properties of HLCT emitters in this work provide inspiration for the rational design of promising materials for high-performance blue OLEDs.

Luminescent hybrid halides with various centering metal cations (Zn, Cd and Pb) and diverse structures†


Dalton Trans.
, 2023,52, 5119-5126, https://doi.org/10.1039/D2DT04067K

Organic–inorganic hybrid metal halides have been extensively studied because of their great potential in optoelectronics. Herein, we report three hybrid metal halides (Bmpip)2ZnBr4, (Bmpip)2CdBr4, and (Bmpip)8Pb11Br30 (where Bmpip+ is 1-butyl-1-methyl-piperidinium, C10H22N+). (Bmpip)2ZnBr4 and (Bmpip)2CdBr4 crystallize in the P21/c space group with zero-dimensional crystal structures with [MBr4]2− (M = Zn, Cd) tetrahedra isolated by Bmpip+. (Bmpip)8Pb11Br30 crystallizes in the triclinic space group P

[1 with combining macron]

 with one-dimensional corrugated chains constructed from face-sharing [PbBr6]4− octahedra. All of the compounds exhibit excellent ambient and thermal stability. Under UV excitation, all three compounds exhibit very broad emissions. Temperature-dependent photoluminescence measurements indicate that the broad emissions of (Bmpip)2ZnBr4 and (Bmpip)2CdBr4 can be attributed to both the organic cations and self-trapped excitons (STEs) and that the emission of (Bmpip)8Pb11Br30 is assigned to STEs. Density functional theory calculations reveal that the three compounds adopt a direct band gap. This work enriches our understanding of the structure types of hybrid metal halides while revealing their diverse emission mechanisms.

Inducing octahedral distortion to enhance NIR emission in Cr-doped garnet Ca3(Al, Sc)2Ge3O12†

J. Mater. Chem. C, 2023,11, 8462-8469, https://doi.org/10.1039/D3TC00528C

An efficient Cr3+-activated broadband near-infrared (NIR) phosphor is the key enabler to integrate compact NIR light-emitting diodes (pc-LEDs) for food testing and medical detection applications. High luminescence efficiency is key for the practical applications of phosphors. Herein, we design a series of efficient Cr3+-doped Ca3Al2−yScyGe3O12 garnet phosphors to induce octahedral distortion for enhancing NIR luminescence efficiency. We adopt the best fitted ideal polyhedron to characterize the octahedral distortion and found that the degree of distortion reaches its maximum at y = 0.2 and decreases with y deviating from 0.2. As a result, the composition with y = 0.2 shows the highest luminescence intensity. The composition dependence of the octahedral distortion coincides with that of the luminescence intensity, indicating that the luminescence properties of Ca3Al2−yScyGe3O12:Cr3+ are closely related to the octahedral distortion. The luminescence internal/external quantum efficiency (IQE/EQE) is significantly enhanced from 65.4%/25.7% in Ca3Al2Ge3O12:0.04Cr3+ to 85.4%/33.5% in Ca3Al1.8Sc0.2Ge3O12:0.04Cr3+. The optimal Ca3Al1.8Sc0.2Ge3O12:0.04Cr3+ phosphor exhibits excellent luminescence thermal stability (∼91% at 423 K) and high NIR output power (38.2 mW at 100 mA) with an electro-optical conversion efficiency of 13.7%. This work provides a strategy for enhancing the NIR luminescence of Cr3+.

Achieving efficient violet-light-excited blue phosphors by nitridation for violet-chip-based full-spectrum lighting†

Inorg. Chem. Front., 2023,10, 2430-2437, https://doi.org/10.1039/D2QI02489F

With the pursuit of healthy lighting, full-spectrum white light-emitting diodes (WLEDs) fabricated with violet chips and tri-color phosphors have been put forward. However, the excitation bands of most reported blue phosphors are located in the ultraviolet (UV) region, which hinders the development of full-spectrum lighting. In this work, by partially introducing N3− into a matrix, a series of Ba0.697Al10.914O17.232-3y/2Ny:0.16Eu2+ (BAONy:Eu) blue phosphors with red-shifted photoluminescence excitation (PLE) spectra were synthesized. Under the excitation of 400 nm violet light, the internal/external quantum efficiency (IQE/EQE) values of the optimal sample BAON1.0:Eu were calculated to be 80%/52%, while the retained integrated emission intensity at 150 °C can be 95% of that at room temperature. The WLED device fabricated by coating BAON1.0:Eu and other commercial phosphors on a violet chip achieved an ultra-high color rendering index (Ra = 95.4). These results indicate that our synthesized BAON1.0:Eu can be an excellent candidate blue phosphor for full-spectrum WLED lighting.