Inorg. Chem. Front., 2022,9, 1912-1919 https://doi.org/10.1039/D2QI00217E
Broadband near-infrared (NIR) emitting phosphors have attracted great interest due to their potential applications in non-destructive examination and bioimaging. However, most of the reported broadband NIR phosphors emit in the NIR-I region with a wavelength shorter than 950 nm, while rare-earth activated NIR-II phosphors can hardly meet the requirements because of their sharp emission. Herein, we successfully synthesized the broadband NIR-II phosphor Li2ZnGeO4:Cr4+. By employing the all-tetrahedron-built matrix, all the Cr ions are stabilized in the tetravalent state due to crystallographic control. This phosphor shows wide absorption from the red to near-infrared region. Under 646 nm excitation, it exhibits broadband NIR-II emission peaking at 1218 nm with an FWHM of 220 nm at room temperature. We also demonstrated the potential applications of Li2ZnGeO4:Cr4+ as an NIR-II light source in non-destructive examination and bioimaging. This work provides a new strategy for exploring broad-band NIR-II luminescent materials.