Polyhedron transformation toward stable narrow‐band green phosphors for wide‐color‐gamut liquid crystal display

Adv. Funct. Mater., 2019, 29(30), 1901988. https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201901988

A robust and stable narrow-band green emitter is recognized as a key enabler for wide-color-gamut liquid crystal display (LCD) backlights. Herein, an emerging rare earth silicate phosphor, RbNa(Li3SiO4)2:Eu2+ (RN:Eu2+) with exceptional optical properties and excellent thermal stability, is reported. The resulting RN:Eu2+ phosphor presents a narrow green emission band centered at 523 nm with a full width at half maximum of 41 nm and excellent thermal stability (102%@425 K of the integrated emission intensity at 300 K). RN:Eu2+ also shows a high quantum efficiency, an improved chemical stability, and a reduced Stokes shift owing to the modified local environment, in which [NaO8] cubes replace [LiO4] squares in RbLi(Li3SiO4)2:Eu2+ via polyhedron transformation. White light-emitting diode (wLED) devices with a wide color gamut (113% National Television System Committee (NTSC)) and high luminous efficacy (111.08 lm W−1) are obtained by combining RN:Eu2+ as the green emitter, K2SiF6:Mn4+ as the red emitter, and blue-emitting InGaN chips. Using these wLEDs as backlights, a prototype 20.5 in. LCD screen is fabricated, demonstrating the bright future of stable RN:Eu2+ for wide-color-gamut LCD backlight application.

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注