Structural Confinement for Cr3+ Activators toward Efficient Near- Infrared Phosphors with Suppressed Concentration Quenching

Trivalent chromium ion-doped near-infrared (NIR) phosphors have been widely studied due to their tunable emission wavelengths and broad applications. High Cr3+ concentration can improve absorption efficiency but generally results in low emission intensity due to the concentration quenching effect. Herein, we report a series of efficient NIR phosphors with suppressed concentration quenching, Sr9M1–x(PO4)7:xCr3+ (M = Ga, Sc, In, and Lu), showing a broadband NIR emission ranging from 700 to 1100 nm peaking at 850 nm upon the 485 nm light excitation. The emission peak position is almost independent of the type of M ion and the Cr3+ dopant content, and the type of M ion has little influence on the luminescence thermal quenching, indicating that [MO6] octahedra are rigid enough to keep octahedral volumes and average M3+–O2– distances nearly constant owing to the formation of the framework structure on Cr3+ substitution. The NIR emission intensities monotonously increase with the Cr3+ content increasing from 0 to 80% with suppressed concentration quenching, the intensity of Sr9Cr(PO4)7 still maintains 84.23% of Sr9Ga0.2(PO4)7:0.8Cr3+ phosphor, and the thermal quenching behavior is slightly dependent on x; these effects can be attributed to the suppressed energy transfer due to the structural confinement effect. The optimal sample, Sr9Ga0.2(PO4)7:0.8Cr3+, has an internal/external quantum efficiency of 66.3%/29.9%. Finally, we fabricate a NIR phosphor-conversion light-emitting diode and demonstrate its applications in nondestructive examination and medical fields.

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注