Emerging ultra-narrow-band cyan-emitting phosphor for white LEDs with enhanced color rendition

Light Sci Appl., 8, 38 (2019). https://www.nature.com/articles/s41377-019-0148-8

Phosphor-converted white LEDs rely on combining a blue-emitting InGaN chip with yellow and red-emitting luminescent materials. The discovery of cyan-emitting (470–500 nm) phosphors is a challenge to compensate for the spectral gap and produce full-spectrum white light. Na0.5K0.5Li3SiO4:Eu2+ (NKLSO:Eu2+) phosphor was developed with impressive properties, providing cyan emission at 486 nm with a narrow full width at half maximum (FWHM) of only 20.7 nm, and good thermal stability with an integrated emission loss of only 7% at 150 °C. The ultra-narrow-band cyan emission results from the high-symmetry cation sites, leading to almost ideal cubic coordination for UCr4C4-type compounds. NKLSO:Eu2+ phosphor allows the valley between the blue and yellow emission peaks in the white LED device to be filled, and the color-rendering index can be enhanced from 86 to 95.2, suggesting great applications in full-spectrum white LEDs.

Luminescence Tuning, Thermal Quenching, and Electronic Structure of Narrow-Band Red-Emitting Nitride Phosphors applications

Inorg. Chem., 2017, 56, 19, 11837–11844. https://doi.org/10.1021/acs.inorgchem.7b01816

Exploring high-performance narrow-band red-emitting phosphor is an important challenge for improving white light LEDs. Here, on the basis of three interesting nitride phosphors with similar vierer rings framework structure, two phosphor series, Eu2+-doped Sr(LiAl)1–xMg2xAl2N4 and Sr(LiAl3)1–y(Mg3Si)yN4 (xy = 0–1), are successfully synthesized by a solid state reaction. They show narrow-band red emission with tunable emission peaks from 614 to 658 nm and 607 to 663 nm. The varying luminescence behaviors with composition and structure are discussed based on centroid shift, crystal field splitting and Stokes shift. On the basis of experimental data, we construct the host referred binding energy (HRBE) and vacuum referred binding energy (VRBE) schemes of divalent/trivalent lanthanide-doped end-member compounds, and further give thermal quenching mechanism of these series phosphors.