Li substituent tuning of LED phosphors with enhanced efficiency, tunable photoluminescence, and improved thermal stability

https://www.science.org/doi/10.1126/sciadv.aav0363?intcmp=trendmd-adv&

Solid-state phosphor-converted white light-emitting diodes (pc-WLEDs) are currently revolutionizing the lighting industry. To advance the technology, phosphors with high efficiency, tunable photoluminescence, and high thermal stability are required. Here, we demonstrate that a simple lithium incorporation in NaAlSiO4:Eu system enables the simultaneous fulfillment of the three criteria. The Li substitution at Al sites beside Na sites in NaAlSiO4:Eu leads to an enhanced emission intensity/efficiency owing to an effective Eu3+ to Eu2+ reduction, an emission color tuning from yellow to green by tuning the occupation of different Eu sites, and an improvement of luminescence thermal stability as a result of the interplay with Li-related defects. A pc-WLED using the Li-codoped NaAlSiO4:Eu as a green component exhibits improved performance. The phosphors with multiple activator sites can facilitate the positive synergistic effect on luminescence properties.

Green persistent luminescence and the electronic structure of β-Sialon: Eu 2+

https://pubs.rsc.org/en/content/articlelanding/2019/tc/c9tc03833g/unauth

Graphical abstract: Green persistent luminescence and the electronic structure of β-Sialon:Eu2+

Divalent europium doped aluminum silicate oxy-nitride (β-Sialon:Eu2+) has been widely used in backlights for liquid-crystal displays due to its outstanding green emission properties. Herein, the persistent luminescence (PersL) performance and electronic structure of β-Sialon:Eu2+ with the general formula Eu0.015Si5.5Al0.485O0.515N7.485 are first reported. The PersL duration is observed to be 400 s after 254 nm irradiation. By virtue of density functional theory (DFT) calculations, we verify that the trap levels responsible for PersL are impurity levels induced by Si–O bonds located below the bottom of the conduction band (CB) on random substitution of Al–O for Si–N in β-Si3N4. The trap depth and density are estimated through experimental data. The charging process for PersL is clarified by the thermoluminescence excitation (TLE) spectrum. The electronic structure diagrams (host referred binding energy, HRBE and vacuum referred binding energy scheme, VRBE) of β-Sialon:Eu2+ are constructed to deeply understand the PersL mechanism and luminescence behavior. We propose a novel strategy to construct the HRBE schemes, i.e. using the onset energy of the thermoluminescence excitation (TLE) spectrum as the energy difference between the 4f ground state and the bottom of the CB to pinpoint the 4f energy level location of Eu2+. This work would allow more rational design of luminescent materials.

Efficient Near‐infrared Pyroxene Phosphor LiInGe2O6:Cr3+ for NIR Spectroscopy Application

April 2021, Journal of the American Ceramic Society.https://doi.org/10.1111/jace.17856

image\

Broadband near-infrared phosphors are essential to realize nondestructive analysis in food industry and biomedical areas. Efficient long-wavelength (>830 nm) phosphors are strongly desired for practical applications. Herein, we demonstrate an efficient broadband NIR phosphor LiInGe2O6:Cr3+, which exhibits a broad NIR emission peaking at ~880 nm with a full width at half maximum of 172 nm upon 460 nm excitation. The internal/external quantum efficiencies of LiInGe2O6:Cr3+ are measured to be 81.2% and 39.8%, respectively. The absorption of the phosphor matches well with commercial blue LEDs. Using the fabricated phosphor converted LED illuminating human palm, distribution of blood vessels can be clearly recognized under a NIR camera. These results indicate that LiInGe2O6:Cr3+ is a promising candidate to be used in future non-destructive biological applications.

Color-Tunable Persistent Luminescence of Ca10M(PO4)7:Eu2+(M = Li, Na, and K) with a β-Ca3(PO4)2 -Type

Inorg. Chem. 2021, 60, 6, 3952–3960.https://doi.org/10.1021/acs.

Eu2+-activated Ca10M(PO4)7 (M = Li, Na, and K) phosphates have been explored extensively because of their tunable emission wavelengths and excellent luminescence performances. Herein, the persistent luminescence (PersL) properties of Eu2+-doped Ca10M(PO4)7 phosphors with a β-Ca3(PO4)2-type structure are reported. With the variation of alkali metal M from Li to Na and to K, the PersL color can be adjusted sequentially from yellow to white and to blue, and the persistent durations are prolonged significantly from about ∼61 s for Ca9.997Li(PO4)7:0.003Eu2+ to ∼1950 s for Ca9.999Na(PO4)7:0.001Eu2+ and to ∼7440 s for Ca9.9995K(PO4)7:0.0005Eu2+ at the threshold value (0.32 mcd/m2) after 254 nm irradiation. The trap depths are estimated according to the thermoluminescence glow curves with various heating rates. Comparing the thermoluminescence excitation and photoluminescence excitation spectra, it can be verified that there are two sources of ionized electrons in the charging process: one is excited from the valence band to the conduction band (CB) and the other is excited from the 4f ground state of Eu2+ to the higher 5d levels or directly to the CB. Finally, the PersL mechanism is proposed. This work is expected to motivate more research of Eu2+-doped phosphate-based PersL materials, as well as contributes to the understanding of the PersL mechanism of Eu2+-doped phosphors.

A Broadband Near-Infrared Phosphor Ca3Y2Ge3O12:Cr3+ with Garnet Structure

Journal of Alloys and Compounds, Volume 863, 15 May 2021, 158699.https://doi.org/10.1016/j.jallcom.

Fig. 1

Near-infrared phosphor (NIR) integrated light-emitting diode (LED) has ideal application prospects in the fields of food inspection and medical imaging. Herein, we have synthesized a garnet-type Ca3Y2Ge3O12:Cr3+ NIR phosphor using solid state reaction method. Broadband NIR emission ranging from 700 to 1100 nm with a peak located at 800 nm indicates a weak crystal field strength for Cr3+, which occupies the six-coordinated Y3+ site. Moreover, the phosphor has satisfactory luminous intensity showing 81%/10% internal/external quantum efficiency and excellent luminescence thermal stability. Our work provides an excellent NIR phosphor choice for NIR LED devices.

Site engineering strategy toward enhanced luminescence thermostability of a Cr3+-doped broadband NIR phosphor and its application

Graphical abstract: Site engineering strategy toward enhanced luminescence thermostability of a Cr3+-doped broadband NIR phosphor and its application
Efficient broadband near-infrared (NIR) light sources are urgently needed for emerging applications in medicine, food analysis, and others. Nevertheless, the performance is limited by luminescence efficiency and thermostability in state-of-the-art broadband NIR phosphors. Here we demonstrate an effective strategy for achieving efficient and thermostable broadband NIR emission by site engineering in a SrGa12O19–LaMgGa11O19:Cr3+ system. Due to the structure symmetry promotion, the end-member SrGa12O19:Cr3+ shows excellent luminescence thermostability, i.e., higher luminescence quenching temperature and more remarkable color stability compared with LaMgGa11O19:Cr3+. At 500 K, the integrated PL intensity remains 86.5% of that at 290 K. Fine local structure, photoluminescence spectra and luminescence decay curves together support that the optically activated Cr3+ centers are reduced due to site symmetry change in SrGa12O19:Cr3+, leading to the remarkable luminescence thermostability. Finally, we have fabricated NIR pc-LEDs with commercial blue-light-emitting InGaN chips (450 nm), showing that SrGa12O19:Cr3+ has a high external quantum efficiency of 45% and has great potential in high-power and efficient pc-LED applications.

Structural Confinement for Cr3+ Activators toward Efficient Near- Infrared Phosphors with Suppressed Concentration Quenching

Trivalent chromium ion-doped near-infrared (NIR) phosphors have been widely studied due to their tunable emission wavelengths and broad applications. High Cr3+ concentration can improve absorption efficiency but generally results in low emission intensity due to the concentration quenching effect. Herein, we report a series of efficient NIR phosphors with suppressed concentration quenching, Sr9M1–x(PO4)7:xCr3+ (M = Ga, Sc, In, and Lu), showing a broadband NIR emission ranging from 700 to 1100 nm peaking at 850 nm upon the 485 nm light excitation. The emission peak position is almost independent of the type of M ion and the Cr3+ dopant content, and the type of M ion has little influence on the luminescence thermal quenching, indicating that [MO6] octahedra are rigid enough to keep octahedral volumes and average M3+–O2– distances nearly constant owing to the formation of the framework structure on Cr3+ substitution. The NIR emission intensities monotonously increase with the Cr3+ content increasing from 0 to 80% with suppressed concentration quenching, the intensity of Sr9Cr(PO4)7 still maintains 84.23% of Sr9Ga0.2(PO4)7:0.8Cr3+ phosphor, and the thermal quenching behavior is slightly dependent on x; these effects can be attributed to the suppressed energy transfer due to the structural confinement effect. The optimal sample, Sr9Ga0.2(PO4)7:0.8Cr3+, has an internal/external quantum efficiency of 66.3%/29.9%. Finally, we fabricate a NIR phosphor-conversion light-emitting diode and demonstrate its applications in nondestructive examination and medical fields.

Tuning luminescence from NIR-I to NIR-II in Cr3+-doped olivine phosphors for nondestructive analysis

Journal of Materials Chemistry C .Issue 16, 2021

Graphical abstract: Tuning luminescence from NIR-I to NIR-II in Cr3+-doped olivine phosphors for nondestructive analysis

The practical application of near-infrared (NIR) phosphors is hindered due to their limited light emitting region and narrow bandwidth. Here, we report a series of Cr3+-doped olivine phosphors, (Mg1−xLix)(Mg1−xScx)GeO4:Cr3+, with tunable luminescence from NIR-I to NIR II based on crystallographic site engineering. By using a [Li+–Sc3+] unit substituting for a [Mg2+–Mg2+] unit, the NIR luminescence can be largely tuned from 940 nm to 1110 nm, and the corresponding FWHM can be modified from 236 to ∼300 nm. The internal quantum efficiency (IQE) and external quantum efficiency (EQE) of Mg2GeO4:1% Cr3+ were measured to be 48.19% and 16.38%, respectively. The photoluminescence of the phosphors matches well with the absorption of several functional groups. By measuring the NIR absorption of different liquids illuminated by NIR light from our phosphors, qualitative and quantitative analysis can be realized. These results suggest that the super-broad NIR luminescence of (Mg1−xLix)(Mg1−xScx)GeO4:Cr3+ has potential applications as light sources for nondestructive food analysis.

 

Orange super-long persistent luminescent materials: (Sr1-xBax)3SiO5:Eu2+,Nb5+

 Mater. Chem. Front., 2021, 5, 333-340

image file: d0qm00488j-f1.tif

Persistent luminescent materials are widely used as night-vision and marking materials in various important fields. Although significant achievements have been made in blue and green persistent luminescent (PersL) materials, the research and development of PersL materials in the warm-color region (550–660 nm) are relatively lacking. Only the orange PersL phosphor Y2O2S:Eu3+,Mg2+,Ti4+ (∼610 nm) and deep red PersL phosphor (Ca1−xSrx)S:Eu2+,Tm3+ (∼650 nm) fulfill the demands of commercial applications. However, sulfide phosphors have poor chemical stability and a relatively short persistent duration time. Herein, we report a series of orange PersL materials, (Sr1−xBax)3SiO5:Eu2+,Nb5+, which exhibit a strong PersL emission band at 550–670 nm and a super-long persistent time of more than 20 h at the 0.32 mcd m−2 threshold value after UV radiation. These new orange PersL materials are compared to the commercial warm-color sulfide PersL phosphor, Y2O2S:Eu,Mg,Ti, with regards to PersL time and brightness, and it is determined that they would have great potential applications.

The red persistent luminescence of (Sr,Ca)AlSiN3:Eu2+ and mechanism different to SrAl2O4:Eu2+,Dy3+

Journal of Luminescence, April 2019, 208

(Sr,Ca)AlSiN3:Eu²⁺ phosphors have been widely used in phosphor-converted white light emitting diodes. Herein, we reported the strong red persistent luminescence in (Sr,Ca)AlSiN3:Eu²⁺ under UV light excitation. The Sr0.8Ca0.2AlSiN3:0.15% Eu²⁺ shows the strongest red persistent luminescence with a peak emission wavelength at ~628 nm and a persistent time of ~9600 s at the 0.32 mcd/m² threshold value. A new persistent luminescence mechanism, which is different to that of SrAl2O4:Eu²⁺,Dy³⁺, was proposed by comparing the thermoluminescence excitation spectrum (TLES) and the photoluminescence excitation spectrum (PLES) of Sr0.8Ca0.2AlSiN3:0.15% Eu²⁺. The electrons are directly excited from 4f ground states to the conduction band or from valence band to conduction band in (Sr,Ca)AlSiN3:Eu²⁺; while, in SrAl2O4:Eu²⁺,Dy³⁺, they are first excited to 5d level and then stimulated thermal process to the conduction band. The effect of Eu²⁺ concentration on red persistent luminescence in (Sr,Ca)AlSiN3:Eu²⁺ were discussed. The proposed mechanism of persistent luminescence can help us to design and find new persistent luminescence materials.